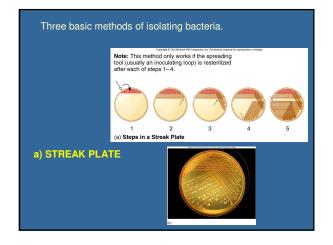
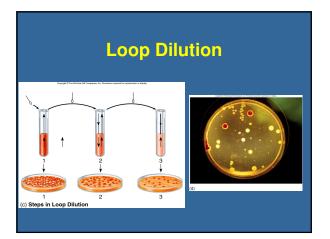
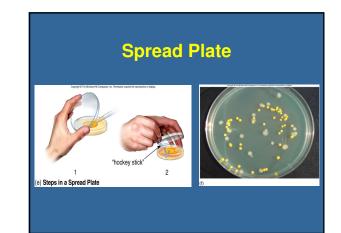

Chapter 3

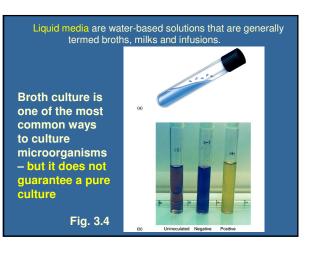

Topics


Methods of Culturing Microorganisms
 Microscope


Methods of Culturing Microorganisms

- Different types of media
- Different types of microscopy

Media


- Classified according to three properties
 Physical state
 - Chemical composition
 - Functional types

Culture Media:

- **Agar** a complex polysaccharide from algae is used to provide solid characteristics.
- Frau Angelina Hesse, the American wife of one of Pasteur's colleagues suggested adding agar to liquid media to solidify it
- This enabled Koch to grow bacteria in pure cultures

Bacterial growth media can be divided into 3 main types, depending upon the <u>physical state</u> it is in

- Liquid media
- Semi-solid media
- Solid media

Semi-solid media contain <1% of agar

Semi-solid media is commonly used to test for motility and to ship microorganisms from one place to another – sometimes termed 'slants'

Solid media contains 1-5% of agar

Solid media (agar) is most often used to culture bacteria and fungi as discrete, single colonies – a reliable way to obtain a pure culture – isolation.

Types of Media – based on chemical composition

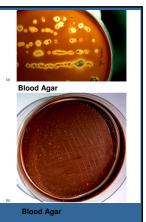
- Synthetic media (Defined)
- · Nonsynthetic or complex media (Undefined)

Synthetic media contain pure organic and inorganic compounds that a molecular formula

nolecular formula).	TABLE 3.2	Medium for the Growth and Maintenance of the Green Alga <i>Euglena</i>
Some media	Glutamic acid (a Aspartic acid (a Glycine (aa) Sucrose (c)	
are minimal	Malic acid (oa) Succinic acid (o Boric acid	2 g
– some	Thiamine hydro Monopotassium	phosphate 0.6 g
require	Magnesium sulf Calcium carbon Ammonium car	ate 0.16 g bonate 0.72 g
many more	Ferric chloride Zinc sulfate Manganese sulf	
ingredients	Copper sulfate Cobalt sulfate Ammonium mo	0.62 mg 5 mg lybdate 1.34 mg
	aa, amino acid; c, c; mg, milligram.	ents are dissolved in 1,000 ml of water. arbohydrate; oa, organic acid; v, vitamin; g, gram; Green Alga Euglena
For synthetic media – requirements of a mic		t know the <u>EXACT</u> growth

Complex or undefined media contain ingredients that are not chemically defined or pure (i.e. animal extracts).

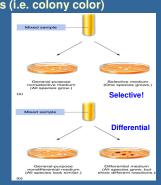
- Not exact chemical formula
- Most are extracts from animals: blood, serum, tissue extracts
- Yeast extract, soybean extract, etc


In the clinical (and laboratory) setting there are functional types of growth media

- Enriched media contain complex organic substances that certain species MUST have to grow - these organisms are often termed 'fastidious'
- Selective media contain agents that inhibit growth of certain microbes
- Differential media contain growth agents that promote different phenotype of different organisms on same media

Enriched media are used to grow fastidious bacteria.

- Common examples in the clinical laboratory are blood agar (<u>hemolytic strains of</u> <u>bacteria</u> – intact RBCs) and chocolate agar (Neisseria gonorrhoeae – lysed RBCs)


- Plating on enriched media does NOT ensure a single species is present

Selective media enables one type of bacteria to grow, while differential media allows bacteria to show different reactions (i.e. colony color)

These two types of media can often in a single step – give a preliminary ID for an infectious organism

Fig. 3.8 - Selective vs. **Differential Media**

Examples of selective and differential media

Selective MacConkey agar – Gram negative enterics

Salmonella/Shigella (SS) agar - specific for these 2 genera

Differential

Blood agar – Distinguish between types of RBC hemolysis

MacConkey agar – Bacteria that ferment lactose – note that this can be used as a selective OR differential media

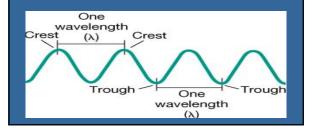
Mannitol Salt Agar (MSA) & MacConkey Agar

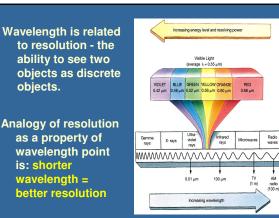
• MSA – Selective and Differential

MacConkey Agar – Selective and differential for Gram (-) enterics

Microscopy

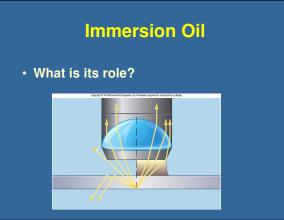
- Magnification
- Resolution
- Optical microscopes
- Electron
 microscopes
- Stains


How many bacteria are there on the end of a pin?


How about that pen you are always chewing on????

Properties of light:

Wavelength - distance between troughs or crest is wavelength = λ



Magnification

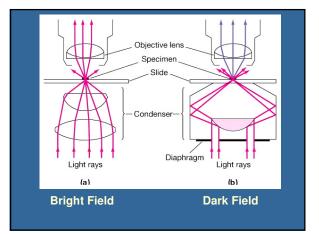
- Ability to enlarge objects
- Given by the OBJECTIVE and OCULAR lens
- For example:
 4X objective and 10X ocular lens
 100X objective and 10X ocular lens

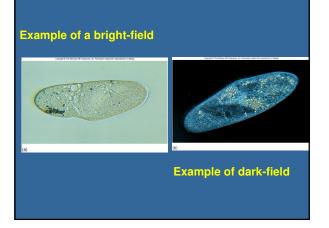
- **Resolving Power**
- Ability to distinguish or separate two points from one another
- Given by the "quality" of the objective lens
- 4X = 0.45
- 100X = 1.25
- Resolving Power= <u>light wavelength (400 nm)</u>
 2 x NA objective lens

Optical microscopes

- All have a maximum magnification of 2000X
 - Bright-field
 - Dark-field
 - Phase-contrast
 - Differential interference
 - Fluorescent
 - Confocal

Bright-field

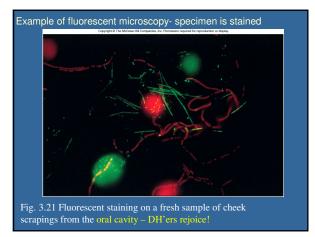

- Most commonly used in laboratories
- Observe live or preserved stained specimens


Dark-field

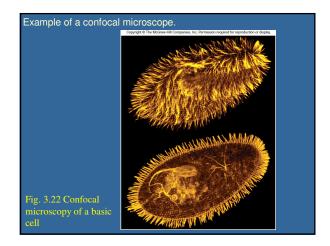
- Observe live unstained specimens
- View an outline of the specimens

Comparison of <u>bright field</u> and <u>dark field</u> microscopy.

- The condenser of the bright field scope concentrates light on the specimen and transmits light through the specimen.
- In dark field microscopy, the condenser deflects the light rays so that the light is reflected by the specimen. The reflected light is then focused into the image.


Phase-contrast

- Observe live specimens
- View internal cellular detail
- Denser parts of the cells will affect the passage of light differently and will vary in contrast


Fluorescent Microscopy

- Fluorescence stain or dye
- UV radiation causes emission of visible light from dye
- Diagnostic tool

Confocal

• Fluorescence or unstained specimen images are combined to form a three-dimensional image.

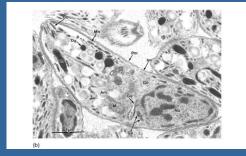
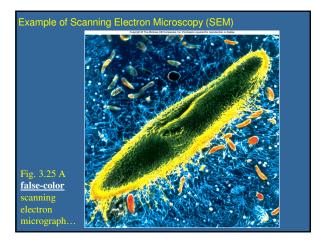
Electron microscopy

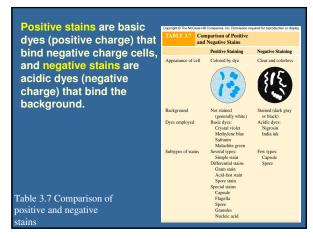
- Very high magnification (100,000X)
- Transmission electron microscope (TEM)

- View internal structures of cells

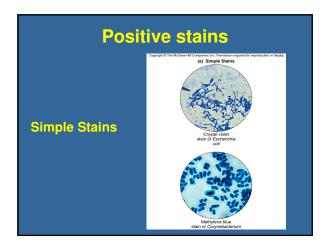
Scanning electron microscope (SEM)
 - Three-dimensional images

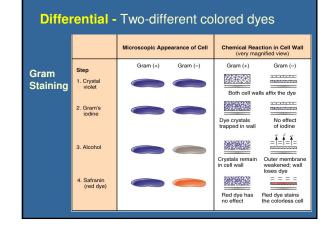
Example of Transmission Electron Microscopy (TEM)

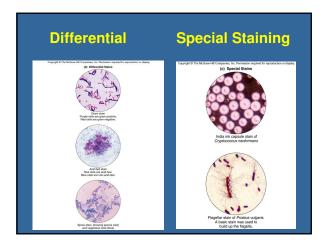




Fig. 3.24 Transmission electron micrograph

Stains


Positive stains


- Dye binds to the specimen
- Negative stains
 - Dye does not bind to the specimen, but rather around the specimen (silhouette).



Positive stains

- Simple – One dye
- Differential
 - <u>– Two-different colored dyes</u>
 - Ex. Gram stain
- Special
 - Emphasize certain cell parts
 - Ex. Capsule stain, flagellum stain

Have a great time in lab!!