Chapter 3. Antigens

Terminology:

Antigen: Substances that can be recognized by the surface antibody (B cells) or by the TCR when associated with MHC molecules.

Immunogenicity VS Antigenicity:

- **Immunogenicity**: Ability to induce an antibody and/or cell-mediated immune response.
- **Antigenicity**: Ability to combine with the final products of the response (antibodies and/or T cell receptor).

Note: Most immunogenic molecules are also antigenic.

Hapten: A small molecule that is antigenic but not (by itself) immunogenic.

Antibodies can be made to haptens only after the hapten is covalently conjugated to a large protein “carrier”.

Factors that influence immunogenicity:

- **Foreign-ness**: Non-self (far apart evolutionarily)
- **Type of molecule**: Chemical nature - protein > polysaccharide > lipid > nucleic acid
- **Size**: Larger molecules tend to be more immunogenic
- **Composition**: Heterogeneity increases immunogenicity. - 4ry > 3ry > 2ry > 1ry structure
- **Degradability**: Protein antigens must be degraded (phagocytosis) in order to be presented to helper T cells.
- **Physical Form**: Denatured > Native

Additional factors that influence the immune response:

- Genetics of the recipient (genotype - MHC)
- Dosage of the antigen (optimal dose - tolerance)
- Number of doses of the antigen (boosters)
- Route of administration of the antigen
 - Intravenous (spleen)
 - Subcutaneous (lymph nodes)
 - Intraperitoneal (lymph nodes)
 - Oral (mucosal)
 - Inhaled (mucosal)
- Use of adjuvant

Table 3-1 Molecular weight of some common experimental antigens used in Immunology

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Approximate molecular mass (Da)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine gamma globulin (BGG)</td>
<td>150,000</td>
</tr>
<tr>
<td>Bovine serum albumin (BSA)</td>
<td>69,000</td>
</tr>
<tr>
<td>Flagellin (monomer)</td>
<td>40,000</td>
</tr>
<tr>
<td>Hen egg-white lysozyme (HEL)</td>
<td>15,000</td>
</tr>
<tr>
<td>Keyhole limpet hemocyanin (KLH)</td>
<td>>2,000,000</td>
</tr>
<tr>
<td>Ovalbumin (OVA)</td>
<td>44,000</td>
</tr>
<tr>
<td>Sperm whale myoglobin (SWM)</td>
<td>17,000</td>
</tr>
<tr>
<td>Tetanus toxoid (TT)</td>
<td>150,000</td>
</tr>
</tbody>
</table>
Adjuvant: a substance that, when mixed with an antigen and injected with it, serves to enhance the immune response to the antigen.

Possible mechanisms of action of adjuvants:
- Prolong the persistence of the antigen, thus giving the immune system more time to respond
- Increase the "size" of the antigen by causing aggregation.
- Stimulate lymphocyte proliferation and/or activation
- Stimulate a local inflammatory response, thus recruiting cells to the site of the antigen (GRANULOMA)
- Enhance co-stimulatory signals

Epitope or Antigenic Determinant - the region of an antigen that binds to a T cell receptor or a B cell receptor (antibody).
- Since an epitope is the part of the antigen that binds to the B cell or T cell antigen receptor, it is the part that determines the antigenicity of the antigen - thus the term "antigenic determinant".
- T and B cells recognize different epitopes on an antigen

Commonly used adjuvants: (Table 3.3)
- **Alum** - aluminum potassium sulfate - precipitates the antigen, resulting in increased persistence of the antigen. Mild granuloma.
- **Incomplete Freund’s adjuvant** - mineral oil-based - increases persistence of the antigen, mild granuloma, and induces co-stimulatory signals.
- **Complete Freund’s Adjuvant** - mineral oil-based adjuvant containing dead *Mycobacterium* - increases persistence of the antigen, stimulates a chronic inflammatory response (granuloma), and co-stimulatory signals. Activates Macrophages and DCs.
- **Bacterial Lipopolysaccharides** - stimulate nonspecific lymphocyte activation and proliferation, and co-stimulatory signals.

Properties of B cell epitopes (Table 3-4)
- Usually dependent on the native, tertiary conformation of the antigen (PROTEIN FOLDING)
- Must be accessible - tend to be on the “surface” of the antigen (hydrophilic)
- May be made of sequential or non-sequential amino acid sequences (epitopes made up of non-sequential amino acid sequences are called “conformational epitopes”).
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.

INCREASED COMPLEXITY
- Each different protein and glycoprotein of a virus (or bacterium or foreign cell) constitutes a different antigen
- Each different antigen contains a number of different epitopes

Denaturation!!!
Properties of B cell epitopes (Table 3-4)

- Usually dependent on the native, tertiary conformation of the antigen
- Must be accessible - tend to be on the “surface” of the antigen (hydrophilic)
- May be made of sequential or non-sequential amino acid sequences (epitopes made up of non-sequential amino acid sequences are called “conformational epitopes”).
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.

1. Antibody binding may be lost after a protein is denatured!!
2. ???

Properties of B cell epitopes (Table 3-4)

- Usually dependent on the native, tertiary conformation of the antigen
- Must be accessible - tend to be on the “surface” of the antigen (hydrophilic)
- May be made of sequential or non-sequential amino acid sequences (epitopes made up of non-sequential amino acid sequences are called “conformational epitopes”).
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.
"B-lymphocytes have sIg molecules on their surface that recognize epitopes directly on antigens. Different B-lymphocytes are programmed to produce different molecules of sIg, each specific for a unique epitope."

Properties of B cell epitopes (Table 3-4)
- Usually dependent on the native, tertiary conformation of the antigen
- Must be accessible - tend to be on the “surface” of the antigen (hydrophilic)
- May be made of sequential or non-sequential amino acid sequences (epitopes made up of non-sequential amino acid sequences are called “conformational epitopes”).
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.

Properties of T cell epitopes (Table 3-4)
- Involves a tertiary complex: T cell receptor, antigen, and MHC molecule
- Internal linear peptides (hydrophobic) produced by processing and bound to MHC molecules
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.
Properties of T cell epitopes (Table 3-4)
- Involves a tertiary complex: T cell receptor, antigen, and MHC molecule
- Internal linear peptides (hydrophobic) produced by processing and bound to MHC molecules
- Does not bind to soluble antigen, APC processing
- Recognize mostly proteins but some lipids and glycolipids can be presented on MHC-like molecules

Must be processed & presented with MHC in APC!!!!!
- Each heavy and light chain is made up of a number of domains (Ig folding or Ig domains).
- Light chains consist of 2 domains (C and V).
- Heavy chains have 4-5 domains (depending on the class of antibody).
- Each domain is about 110 amino acids in length and contains an intrachain disulfide bond between two cysteines about 60 amino acids apart.

- 150,000 molecular weight
- Constant (C) and Variable (V) regions

What is the difference?

Basic Antibody Structure
- Multiple myeloma = cancerous plasma cells
- Monomer = 150,000

RECAP:
- The Fc region plays NO role in antigen binding.
- Papain breaks antigen molecules into 2 Fab fragments and an Fc fragment.
- Pepsin breaks antibody molecules into an F(ab')2 fragment and a VERY SMALL pFc' fragment.
- Mercaptoethanol treatment results in 2 heavy and 2 light chains
- Complexes of antibodies cross-linked by antigen are called “immune complexes”.

Papain
2 (45,000)
1 (50,000)
2 Fab + Fc
1. Constant region - amino acid sequence in the C-terminal regions of the H and L chains is the same.

2. Variable region - amino acid sequence in the N-terminal regions of the H and L chains is different. This region provides antibodies with unique specificity.

3. Hyper-variable regions are regions within the variable regions (greater specificities).

Summary

- Molecule consists of Constant and Variable regions for both Light and Heavy chains (C\textsubscript{H}, VH, CL, VL)
- Ig molecule made of domains
- Domains ~ 110 aa
- Each antigen-binding site is made up of the N-terminal domain of the heavy and the light chains
- IgM and IgE possess 4 CH domains (CH1-CH4). Hinge region is missing.
- IgG, IgA and IgD have 3 CH domains (CH1-CH3).
- Hypervariable regions in the Variable regions of both H and L chains.

RECAP:

- Antibodies are comprised of repeating 110 aa units referred to as domains or Ig folds.
- The C-terminal domains are constant from antibody to antibody (within a class).
- The constant region domains are responsible for all functions of antibody other than antigen binding (opsonization, ADCC, complement activation) \rightarrow Biological Function!
- The N-terminal domains are variable from antibody to antibody and are referred to as “variable domains”.
- The variable domains contain 3 hypervariable regions - the CDRs.
- The CDRs of the V domains in both H and L chains make up the antigen-binding site.
Antibody-Mediated Effector Functions

- Binding to Antigen
- OPSONIZATION: FcR in Macrophages and neutrophils (C3b)
- COMPLEMENT ACTIVATION: IgG and IgM
- ADCC – NK cells through FcR
- CROSSING EPITHELIAL LAYERS – IgA (but also IgM)
- CROSSING PLACENTA- IgG

Fcγ receptors enhance phagocytosis of foreign cells/particles coated with IgG.

Antibody made in response to foreign cells (cells/viral particles/bacteria etc) will bind to those cells. Macrophages (and neutrophils) possess receptors for the Fc region of IgG.

Binding of macrophage Fc receptors to antibody bound to cells/particles facilitates and increases phagocytosis of cells/particles.

ADCC - Antibody-dependent cellular cytotoxicity - mediated by IgG

Antibody made in response to foreign cells (cells/viral particles/bacteria etc) will bind to those cells.

Cells of the innate immune system (neutrophils, eosinophils, macrophages, NK cells) possess receptors for the Fc region of IgG. These cells bind to antibody on the surface of foreign cells and release lytic compounds to lyse.

Monomer, Dimer, and Pentamer

(a) IgG

- Most abundant in secondary responses
- Crosses placenta (FcRn)
- Complement activation
- Binds to FcR in phagocytes
- 4 Subclasses
- 150,000
Role of IgE in allergic reactions
- IgE antibodies mediate the immediate-hypersensitivity (allergic) reactions.
- IgE binds to Fc receptors on the membranes of blood basophils and tissue mast cells.
- Cross-linkage of receptor-bound IgE molecules by antigen (allergen) induces degranulation of basophils and mast cells.

A variety of pharmacologically active mediators present in the granules are released, giving rise to allergic manifestations.

190,000

IgD
- Role unknown
- Present on the surface of MATURE B cells \(\rightarrow \) Marker!!

- 150,000
SUMMARY

- IgA and IgM are secreted across epithelial surfaces
- IgG, IgD and IgE can be found only within the body - in serum or lymph.
- IgA and IgM are also found in serum and lymph BUT IN ADDITION can also be found in secretions such as mucous secretions, saliva and tears.
- The IgA and IgM found in external secretions differs from that found in serum by the presence of an additional component referred to as the "secretory component".
- This component is acquired as the IgA or IgM is transported across the epithelial cell barrier.

Antigenic Determinants on Immunoglobulins

- Abs are glycoproteins and themselves very immunogenic
- Epitopes on immunoglobulins are divided into:
 - ISOTYPIC
 - ALLOTYPIC
 - IDIOTYPIC

The function of antibody varies depending on which heavy chain is used.

(a) Isotypic determinants

(b) Allotypic determinants

Allelic variation (Allotypes): IgG of a particular class may be slightly different between individuals (e.g. variation in the IgG amino acid sequence)

Note: This type of variation has no effect on antibody function.

(c) Idiotypic determinants

RECAP - Sequence variation in antibodies:

1. Different light changes - no significant functional effect
2. Different heavy chains - very significant functional effect - **isotypic variation**
3. Allelic variation between individuals - no large functional effect - **allotypic variation**
4. Variation in the antigen-binding site - **idiotypic variation**

Generated by variation in amino acid sequence in the V__H and V__L. Most exactly, in the CDRs in the V regions

Variation in the antigen binding site (Idiotypes)

Remember: Idiotype = Ag binding site
B Cell Receptor (BCR):
- Short cytoplasmic tail (3-28 aa) ….signaling?
- Signaling through a heterodimer, Ig-α and Ig-β
- Ig molecule + Ig-α/Ig-β is the BCR
- The heterodimer molecule is member of the Ig superfamily group

Ig Superfamily
- Divergence from a common gene ancestor coding for 110 aa.
- A member MUST have a “typical” Ig domain or fold → 110 aa with an intra chain disulfide bond 50-70 aa apart.
- Most members do not bind Ag!! Then, they must facilitate interaction with surface proteins
- You must know members with roles in: a) immune function, b) Receptor/Signal transduction, and c) Adhesion

Receptors

Immune Function

Monoclonal Antibodies
- Kohler & Milstein 1975
- Fusion of normal, activated B cell and plasmacytoma (cancerous plasma cell)
- Hybrid: immortal, secrete Ab, hypoxanthine
Plasmacytoma VS B cell

- Plasmacytoma:
 - Cancerous plasma cell (Immortal)
 - Does not secrete Abs
 - Lacks HGPRT

- Normal spleen B cell
 - Limited life span
 - Secretes Abs
 - Possess HGPRT

RESULTS:

Spleen B cell Hybrid Plasmacytoma

Die in culture Immortal, Secretes Abs, Possess hypoxanthine Lacks HGPRT

Applications