Chapter 10. Genetic Engineering

Tools and Techniques

1. Enzymes
2. Analysis of DNA
3. Nucleic acid hybridization
4. Synthesizing DNA
5. Polymerase Chain Reaction

1. Enzymes

- Restriction endonuclease
- Ligase
- Reverse transcriptase
 - cDNA

Restriction endonuclease

- Originates in bacterial cells
- Many different types exist
- Natural function is to protect the bacterium from foreign DNA (bacteriophage)
- Recognizes 4 to 10 base pairs (palindromic sequence)
- Cleaves DNA at the phosphate-sugar bond → generates “sticky ends”
- Used in the cloning method
- Ex. EcoRI from Escherichia coli

Ligase:

- Link DNA fragments
- Seals “sticky ends” by rejoin the phosphate-sugar bonds
- Used in the cloning method

Reverse transcriptase (retroviruses)

- Converts RNA to DNA
- Ex. Complementary DNA (cDNA)
- Required for eucaryote gene expression
- mRNA to cDNA; No introns are present
Electrophoresis:
- Separation of DNA based on size
- Negative charge DNA (phosphate group) migrates to positive electrode
- Usefulness
 - Characterizing DNA fragment (RFLP)
 - Fingerprinting

Steps associated with the electrophoresis technique.

Fig. 10.2 Revealing the patterns of DNA with electrophoresis

Hybridization and probes:
- Complementary sites on two different nucleic acids bind or hybridize (ssDNA with ssDNA or RNA)

Analysis of DNA

Probes:
- Small stretches of nucleic acid with a known sequence called an oligonucleotide
- Single stranded
- Detects specific nucleotide sequences in unknown nucleic acid samples
- Probes – reporter molecules (radioactivity, luminescent, etc)

Southern blot:
- Method for detecting an unknown sample of DNA
- Incorporates restriction endonuclease, electrophoresis, denaturing, transfer to filter, probing, and visual detection.
Analysis of DNA

Sequencing:
- Provide the identity and order of nucleotides (bases) for all types of DNA
- Method
 - Sanger method
 - Synthesis of a complementary strand
 - Primers
 - Each dideoxynucleotide (dd) – no oxygen at C3 in the sugar → when added will stop reaction
 - Electrophoresis

Polymerase Chain Reaction (PCR)
- Specific amplification of DNA
- Involves a denaturing (95 C), priming (annealing, 55-65 C), and extension (72 C) cycle
- 30 cycles are sufficient for detection of DNA
- Can be used to detect disease or infectious agents
Recombinant DNA

- Recombinant
- Applications
- Cloning vectors
- Cloning host

Recombinant: When a cloning host receives a vector containing the gene of interest
- A single cloning host containing the gene of interest is called a clone

Applications:
- Protein production
- Alter organisms normal function
- Source of DNA (synthesis)

Practical applications of recombinant technology include the development of pharmaceuticals, genetically modified organisms, and forensic techniques.

Cloning vectors:
- Carry a significant piece of the donor DNA (gene of interest)
- Readily accepted DNA by the cloning host
- Attributes:
 - 1. Contain an origin of replication (ORI)
 - 2. Must accept DNA of desired size (>10 kb)
 - 3. Contain a selective antibiotic resistant gene
- Ex. Plasmids, phages

Recombinant DNA

Cloning host
- Bacteria (procaryote)
 - *Escherichia coli*
 - Bacteria will not exceed introns from eucaryotic DNA and no modification of proteins
- Yeast (eucaryote)
 - *Saccharomyces cerevisiae*
 - Will exceed introns

An example of a plasmid vector.

Fig. 10.7 Methods and applications of genetic technology

Fig. 10.8 Partial map of the pBR322 plasmid of *E. coli*
Important protein products generated by recombinant DNA technology.

Table 10.2 Current protein products from recombinant DNA technology

<table>
<thead>
<tr>
<th>Recombinant Organisms</th>
<th>Recombinant Organisms</th>
<th>Recombinant Organisms</th>
<th>Recombinant Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified bacteria</td>
<td>Modified bacteria</td>
<td>Modified bacteria</td>
<td>Modified bacteria</td>
</tr>
<tr>
<td>Transgenic plants</td>
<td>Transgenic plants</td>
<td>Transgenic animals</td>
<td>Transgenic animals</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>Pseudomonas syringae</td>
<td>Pseudomonas fluorescens</td>
<td>Pseudomonas fluorescens</td>
</tr>
<tr>
<td>- Prevents frost crystals from forming on plants</td>
<td>- Contains an insecticide gene</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recombinant Organisms

- Modified bacteria and viruses
- Transgenic plants
- Transgenic animals

Modified bacteria

- *Pseudomonas syringae*
 - Prevents frost crystals from forming on plants
- *Pseudomonas fluorescens*
 - Contains an insecticide gene

Transgenic plants

- *Agrobacterium tumefaciens*
 - Tumor inducing (Ti) plasmid contains gene of interest, and is integrated into plant chromosome
 - Ex. tobacco, garden pea, rice

Fig. 10.9 Steps in recombinant DNA, gene cloning, and product retrieval.

Schematic of *Agrobacterium tumefaciens* transferring and integrating the Ti plasmid into the plant chromosome.

Fig. 10.11 Bioengineering of plants.
Examples of other transgenic plants that include tobacco, garden pea, and rice.

Table 10.3 Examples of engineering plants

<table>
<thead>
<tr>
<th>Plant</th>
<th>Trait</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobacco (Nicotiana)</td>
<td>Herbicide resistance</td>
<td>Tobacco plants in the experiments have been identified with a gene that provides protection against herbicides</td>
</tr>
<tr>
<td>Pea (Pisum sativum)</td>
<td>Pest resistance</td>
<td>Pea plants were resistant to pests</td>
</tr>
<tr>
<td>Oryza sativa (rice)</td>
<td>Added nutritional value</td>
<td>Rice plants were enriched with nutrients</td>
</tr>
</tbody>
</table>

Table 31

Transgenic animals

- Knockout mouse
 - Tailor-made genetic defects
 - Cystic fibrosis
 - Gaucher’s disease
 - Alzheimer’s disease
 - Sickle-cell anemia
 - Pharmaceutical production

Table 32

Therapy

Gene therapy:
- Repair a genetic defect
 - *Ex vivo* strategy
 - *In vivo* strategy
- Severe immunodeficiency disease
- Cystic fibrosis
- Sickle anemia

Table 33

Antisense RNA or DNA
- Prevent the synthesis of an unwanted protein
- Targets mRNA

Triplex DNA
- Prevents transcription
- Targets double stranded DNA

Table 34

Examples of the mechanism for antisense DNA and triplex DNA

Fig. 10.14 Mechanisms of antisense DNA and triplex DNA
Genome Analysis

Maps:
- Determine the location of particular genes (locus) on the chromosome
- Determine differences in chromosomal regions (alleles)
 - Types of maps
 - Genomics and bioinformatics

Types of maps
- Linkage
 - Shows the relative proximity and location of genes
- Physical
 - Shows the proximity and size of genes
- Sequence
 - Shows the exact order of bases

Genomic and bioinformatics
- New discipline of study as a result of the enormous data generated by maps
 - Analyze and classify genes
 - Determine protein sequences
 - Determine the function of the genes

Genome Analysis

Fingerprinting:
- Emphasizes the differences in the entire genome
- Techniques
 - Endonucleases
 - PCR
 - Southern blot
- Uses
 - Forensic medicine
 - Identify hereditary disease

Comparing the fingerprints for different individuals.

Fig. 10.15 DNA fingerprints: the bar codes of life