

Hematopoiesis

- Hematopoiesis- formation and development of WBC and RBC → bone marrow.
- Hematopoietic stem cells (HSC)- give rise to any blood cells (constant number, self renewing)
- Yolk sac (2 months) \rightarrow liver & spleen (3-7 months) \rightarrow Bone marrow (birth)

Hematopoiesis

- Progenitor commitment depends on the influence of growth factors and cytokines
- In bone marrow stromal cells support the growth and differentiation of hematopoietic cells → direct contact or growth factors.
- Stromal cells meshwork of fat cells, endothelial cells, fibroblasts & MΦs.
- Hematopoiesis regulated at the genetic level through several transcription factors (GATA-2, Ikaros, Bmi-1, etc)

Hematopoiesis

- Hematopoiesis maintains steady levels of blood cells
- 3.7 x 10¹¹ cells/day!!!
- Regulation:
 - Cytokines produced by bone marrow stromal cells
 - Cytokines produced by non-hematopoietic cells (T cells, $M\Phi s)$
 - Regulation of receptors for hematopoietically active cytokines
 - Removal of cells by programmed cell death

Apoptosis

- Programmed cell death
- **Changes:** shrinking, rearrangement of cytoskeleton, alteration of cell membrane permeability, chromatin condensation, cytoplasm fragmentation
- Difference between apoptosis and necrosis?

Gene	Function	Role in apoptosis
bcl-2	Prevents apoptosis	Inhibits
bax	Opposes <i>bcl-2</i>	Promotes
bcl-X _L (bcl-Long)	Prevents apoptosis	Inhibits
bcl-X _S (bcl-Short)	Opposes <i>bcl-X</i> _L	Promotes
caspase (several different ones)	Protease	Promotes
fas	Induces apoptosis	Initiates

Cell type	Cells/mm ³	Total leukocytes (%
Red blood cells	$5.0 imes10^6$	
Platelets	$2.5 imes10^5$	
Leukocytes	$7.3 imes10^3$	(NK cells 5-10%)
Neutrophil	$3.7 - 5.1 imes 10^3$	50-70
Lymphocyte	1.5–3.0 $ imes$ 10 3	20-40
Monocyte	$1-4.4 imes 10^{2}$	1–6
Eosinophil	$1-2.2 imes 10^{2}$	1–3
Basophil	<1.3 × 10 ²	<1

Lymphoid cells

- Three populations:
 - B cells
 - T cells
 - NK cells
- Naïve lymphocyte → Ag exposure → Lymphoblast → Effector cells & Memory cells
 - Effector cells: T helper (Th) or T cytotoxic (Tc) ----Tregs, Th17

B Lymphocytes

- <u>CD</u> cluster of differentiation (unique lymphocyte surface molecules)
- Surface markers:
 - Surface Ig (free Ag)
 - MHC-II molecules
 - CD19 Co-receptor
 - CD35 (CR1) and CD21 (CR2)
 - CD32 (FcγRII),
 - CD40 (signal transduction)
 - CD80 (B7-1) and CD86 (B7-2) -Signal transd

T lymphocytes

- **T cell receptor (TCR)** recognizes Ag after processing and IF presented by major histocompatibility complex (MHC) molecules
- Surface markers:
 - TCR (processed Ag + MHC)
 - CD3 (signal transduction)
 - CD4 or CD8 (interacts with MHC molecules)
 - CD28 (interacts with CD80 and CD86 → B7 molecules)

T cells

- There are two types of MHC molecules class I MHC and class II MHC.
- Two types of T cells: Helper (CD4+) T cells and Cytotoxic (CD8+) T cells.
- CD4+ T cells recognize antigen presented on class II MHC. Role: Cytokine secretion
- CD8+ T cells recognize antigen presented on class I MHC. Role: Cell killing
- Normal ratio: 2:1 (CD4 to CD8)
- Treg CD4+CD25+FoxP3+

NK cells

- Lack TCR of T cells or sIg of B cells
- Unique surface markers: CD16 (FcγRIII) and CD56
- Action similar to Tc (CD8+) cells
- Role: destroys tumor cells and virus-infected cells
- Recognition due to altered expression of MHC-I and ADCC (Ab-Dependent Cell Cytotoxicity)
- NK1-T cell: T cell and NK cell. Expresses TCR, TCR interacts with CD1 (similar to MHC-II), express CD16, and cell killing.

Eosinophils:

- Somewhat phagocytic; Comprise 1-3% of leukocytes
- Important in defense against invading parasites and worms (helminths) → toxic granules
- Worm infections are often accompanied by eosinophilia.
- Release eosinophilic granules that damage parasites

Basophils:

- Comprise <1% of leukocytes
- Non-phagocytic
- Release of pharmacologically active chemicals from granules \rightarrow allergic reactions

Organs of the Immune System

• Primary Lymphoid Organs

- Bone marrow and Thymus
- Origen and maturation of lymphocytes

Secondary Lymphoid Organs

- Lymph nodes, Spleen, Mucosal-associated lymphoid tissues (MALT)
- Trap antigen for interaction with lymphocytes
- Where IRs take place!

THYMUS

- Site of T cell development and maturation
- Two compartments:
 - CORTEX: Packed with immature T cells (Thymocytes)
 - MEDULLA: Sparsely populated with mature T cells
- Function: Generate populations of T cells with "correct" TCRs
- Only 5% of incoming thymocytes exit the thymus
- DiGeorge's syndrome (H) and nude mice

Lymphatic System

- Plasma "leaks" → ~2.9 l/day (interstitial fluid)
- Returned through lymphatic vessels \rightarrow lymph
- Muscles \rightarrow one way flow

Secondary Lymphoid Organs

- Lymph nodes, Spleen, Mucosal-associated lymphoid tissues (MALT)
- Trap antigen for interaction with lymphocytes
- Primary vs secondary follicles
- Where IRs take place!
- 98% naïve lymphocytes (2% blood)
- HEV

LYMPH NODES

- Site for immune responses for antigens in lymph
- Interstitial fluid
- Perfect design to encounter antigens from tissues

Three regions:

-CORTEX – Primary follicles containing B cells, MΦ, follicular DC into Primary Follicles -PARACORTEX- T cell area -MEDULLA- MΦ and Plasma cells

Role of immature DC?

High Endothelial Venules (HEV)

- Venules that allow recruitment of NAÏVE lymphocytes from the blood
- After Ag stimulation increase recruitment of lymphocytes from the blood → swelling
- Exception \rightarrow Spleen
- L-selectin (L-sel)

SPLEEN

- Contains 25% of total lymphocytes!
- Collects antigens from the blood through the splenic artery. Removes old RBCs
- -Two regions: RED and WHITE PULP

-RED PULP: MΦ and RBC

-WHITE PULP: Lymphoid tissue. Surrounds the splenic artery to form the periarteriolar lymphoid sheath (PALS). Populated by T cells and B cells - MARGINAL ZONE: ΜΦ

Mucosal Associated Lymphoid Tisssue (MALT)

- **Role:** Collects antigens from Respiratory, Gastrointestinal, and Urogenital tracts.
- In small intestine: GALT
 - Lymphoid tissue in Payer's Patches
 - Antigen delivered by M cells to DC
 - In Payer's Patches B cell follicles are <u>constitutively</u> active \rightarrow Germinal center

