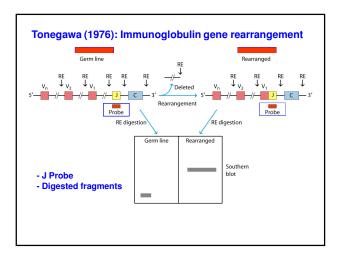
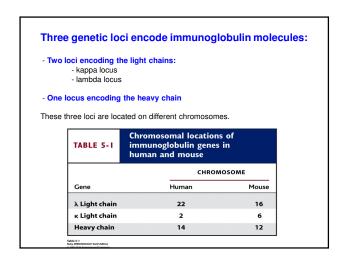

Chapter 5

Organization and Expression of Immunoglobulin Genes

Genetic Models

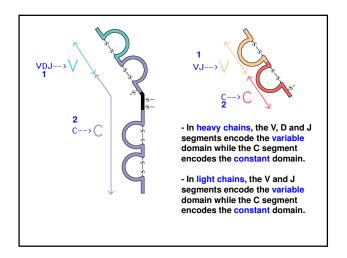
• How to account for:

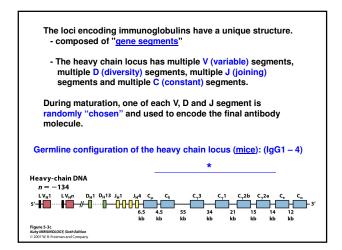

- 1) Vast diversity of antibody specificities
- 2) Presence of Variable regions at the amino end of Heavy and Light chains, and a Constant region at the carboxyl end
- 3) Existence of isotypes (different Heavy chains) with same antigenic specificity

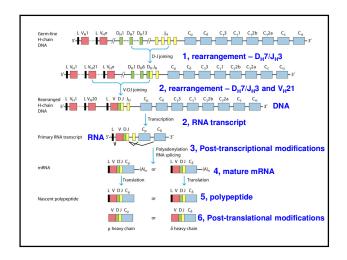

Models to Explain Antibody Diversity

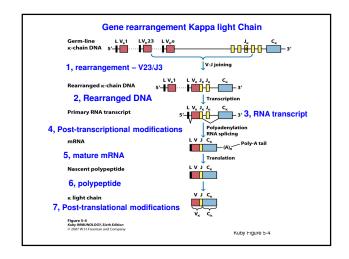
- 1) **The Germ Line Theory**: "genome posses the large repertoire of antibody genes to account for all the antibody diversity"
- 2) The Somatic Variation Theory: "genome posses a relatively small number of antibody genes and diversity is generated by mutation and recombination of these genes during somatic development"

The two-gene model

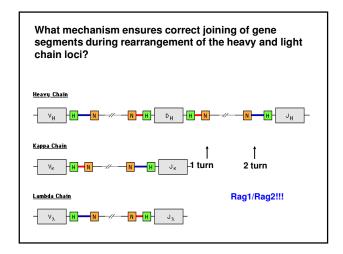

- Developed by Dreyer and Bennet in 1965
- Two separate genes, one codes for the V region and the other for the C region
- These genes come together at the DNA level to form a continuous message
- There must be thousands of V genes in germ line but only one gene for the C region

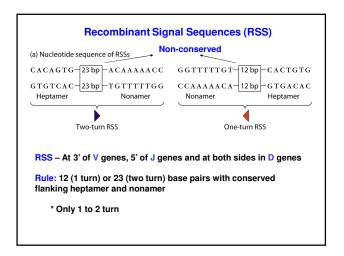


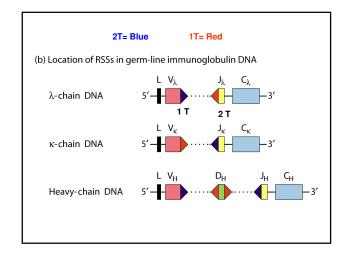


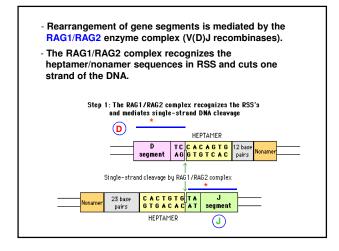

Multigene Families

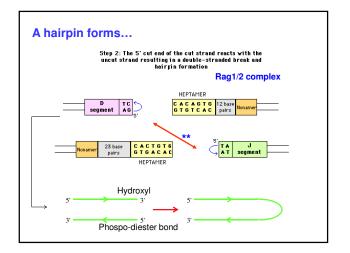
- Light Chains: V, J and C gene segments.
- Lambda: Humans (30V, 4J and 7C genes)
- Kappa: Humans (40V, 5J and 1C genes)
- Heavy Chains: V, D, J and C gene segments
- Heavy Chains: Humans (50V, 25D, 6J and 8 C genes)

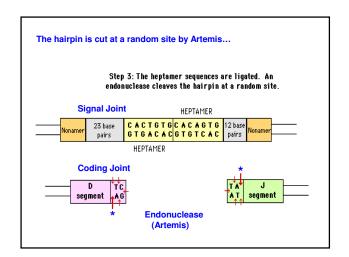


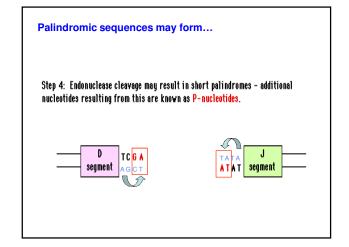


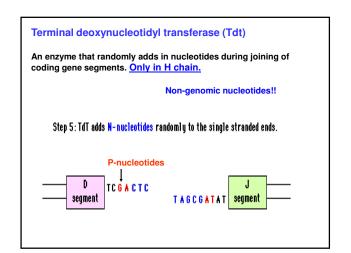


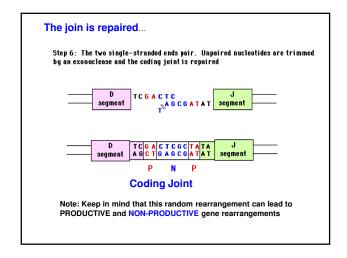

What mechanism ensures correct joining of gene segments during rearrangement of the heavy and light chain loci?

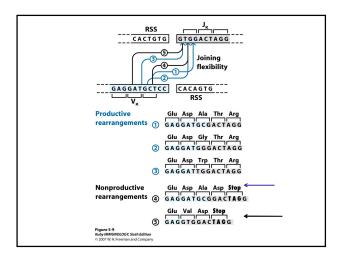

- Recombination signal sequences (RSS) conserved sequences in regions just upstream or downstream of gene segments.
- Consist of a conserved heptamer (green) and nonamer (orange) with a 12 or 23 bp spacer.
- The one-turn (red)/two-turn rule (blue) (12/23 rule) recombination occurs only between a segment with a 12 bp spacer and a 23 bp spacer.







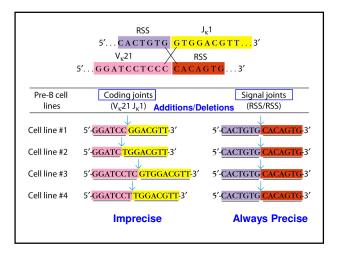




Generation of antibody diversity

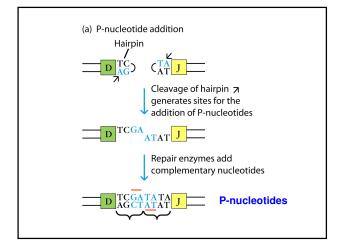
- 1. Multiple germline V, D and J gene segments
- 2. Combinatorial V-J and V-D-J joining
- 3. Junctional flexibility (diversity)
- 4. P-nucleotide addition
- 5. N-nucleotide addition
- 6. Somatic hypermutation
- 7. Combinatorial association of heavy and light chains

1 and 2. Combinatorial Diversity

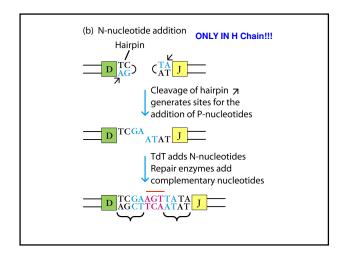

• Humans:

- Heavy Chain: V (51), D (27), J (6) = 8262
- Light Chain: Kappa V (40), J (5) = **200** Lambda - V(30), J (4) = **120** $8262 \times (200 \times 120) = 2.64 \times 10^{6}$

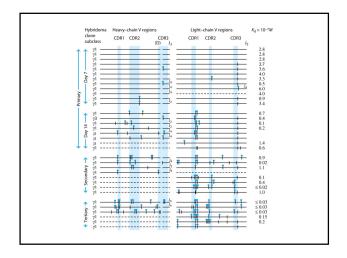
Where does other diversity comes from?

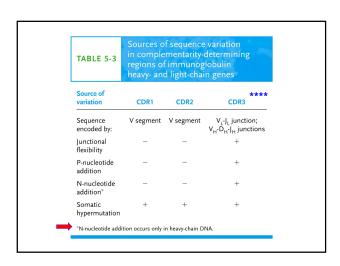

3. Junctional flexibility (diversity)

- Generated through V, D and J combinations
- Joining of Recombination Signal Sequences (RSS) = Signal Joint (heptamer + heptamer)
- Joining of Coding Sequences = Coding Joint
- Signal Joints ALWAYS joined precisely, but joining of Coding Joints is IMPRECISE
- Good = Antibody diversity
- BAD = Non=productive rearrangements


4. P-nucleotide addition

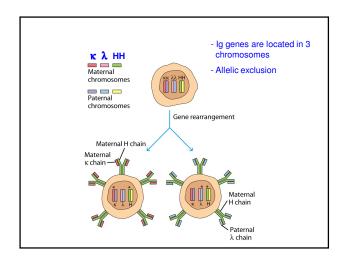
- Cleavage of the Hairpin at the end of the coding sequence by endonuclease (Artemis) is random
- Generates a short single strand of nucleotides at the end of the Coding sequence
- Addition of complementary nucleotides to this strand forms a palindrome sequence (P nucleotides)

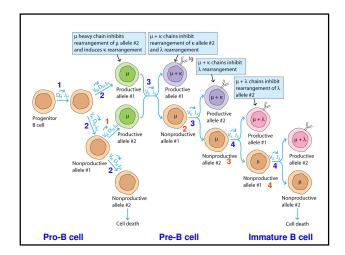

5. N-nucleotide addition


- Once complementary nucleotides to this strand have been added to form a palindrome sequence (P nucleotides)
- The enzyme TdT (terminal deoxynucleotidyl transferase) fills the gap with N nucleotides.
- This enzyme can add randomly up to 15 N nucleotides (non-genomic)
- N nuclotides can be added to the D-J and V-DJ in the H chain (and to the V-J in the L chain)
- · Only in H chain

6. Somatic Hypermutation

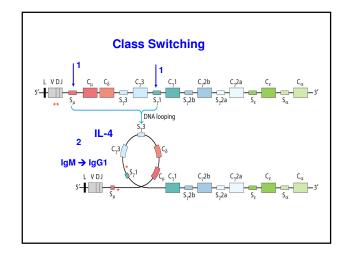
- Generated point mutations (substitutions) in gene segments for variable regions (VDJ and VJ segments)
- Takes place in <u>secondary lymphoid organs</u> (~ 1 week after contact with antigen) Germinal centers (1 per 1000 bp per cell division)
- In mature B cells mutations are clustered in CDRs regions
- Somatic hypermutation leads to Affinity maturation- selection process leading to survival of those B cells with high affinity for the antigen

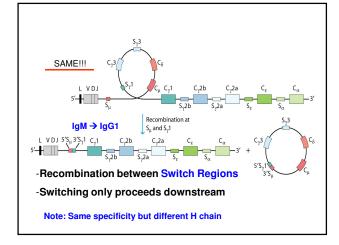

Generation of antibody diversity


- 1. Multiple germline V, D and J gene segments
- 2. Combinatorial V-J and V-D-J joining
- 3. Somatic hypermutation
- 4. Junctional flexibility
- 5. P-nucleotide addition
- 6. N-nucleotide addition
- 7. Combinatorial association of heavy and light chains

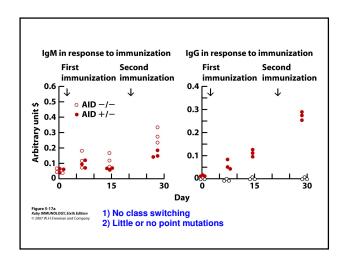
 $2.64 \times 10^6 \rightarrow 7.2 \times 10^7 \text{ variabilities!!!!}$

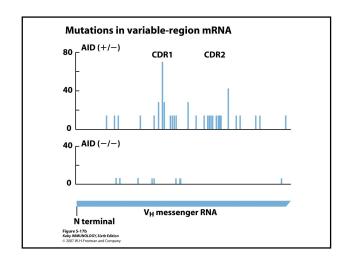
ALLELIC EXCLUSION:


- -We have two copies (alleles) of each Ig gene one inherited from our father and one from our mother.
- In most cases, both genes are expressed.
- But Antibody genes are different! Only one heavy chain allele and one light chain allele is expressed!!!
- This is termed allelic exclusion (one allele is excluded). Once a productive arrangement is made, the other allele is suppressed
- Why? To ensure that each B cell makes antibody of a single specificity.

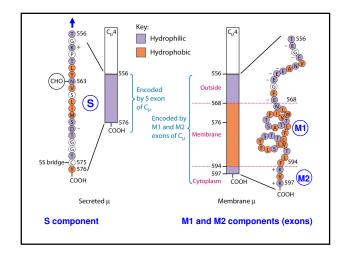


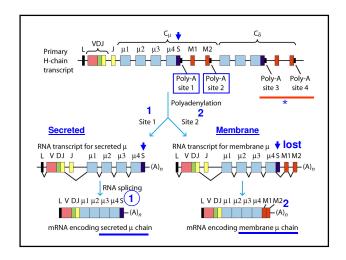
Class Switching

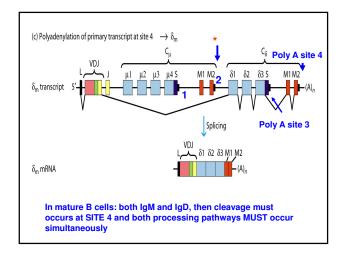

- Antigen stimulation of a B cells → Antibodies with same variable Heavy (VDJ) with any C_H gene segment
- Process dependent on Switch Regions
- Switch Regions (2-3 kb) are located upstream from each C_H segment, except IgD (C δ)
- Process driven by cytokines:
 - IL-4 \rightarrow IgM to IgG1 or IgE
 - IFN- γ → IgM to IgG2a
- Players in regulation: 1) switch regions, 2) switch recombinases, 3) cytokine signals

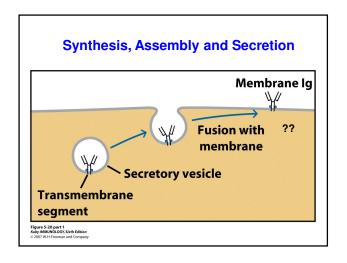


AID Enzyme

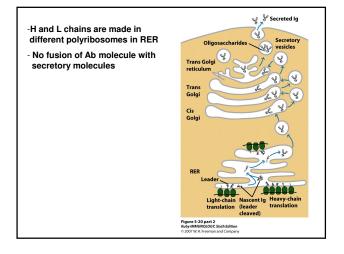

- Activation induced cytidine deaminase
- RNA editing enzyme
- Deamination of cytosine → uracyl → repair induces base modifications!!!
- Mediates <u>SOMATIC HYPERMUTATION</u>, GENE CONVERSION, and CLASS switching recombination

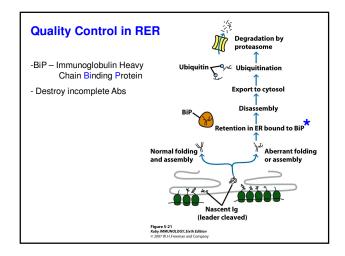


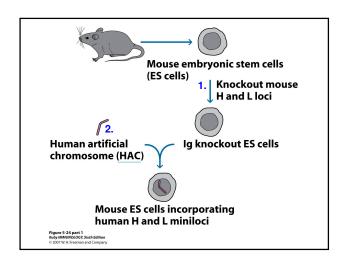


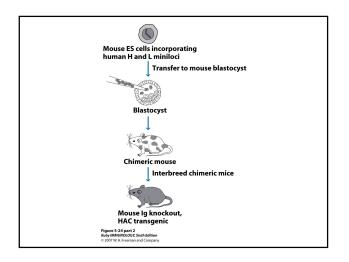

Expression of membrane or secreted Immunoglobulin

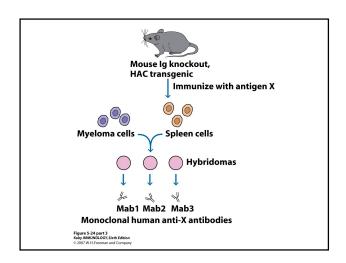
- In mature B cells → membrane forms; in Plasma cells → secreted forms
- Process depends on <u>differential processing</u> of primary transcript
- • Remember: IgG, IgD, IgA (3 C_H domains), IgM and IgE (4 C_H domains).
- Domain 3/4 contains the Secretory (hydrophilic) nucleotide sequence (S) at its carboxyl end.
- Two Exons at 3' encode the M1 (trans-membrane) and M2 (cytoplasmic) segments.
- Primary transcript contains two PolyA sites: If cleavage at Poly A site I = Secreted Form. If cleavage at PolyA site 2 = Membrane Form






- Plasma cells produce and secrete 1000 Ab/sec!
- Assembly in the RER


WHERE TO GO?


- Membrane-bound → hydrophobic sequence into the membrane
- Secreted → hydrophilic sequence, no transmembrane component

Monoclonal antibody [mAB] (product name)	Nature of antibody	Target (antibody specificity)	Treatment for
Muromonab-CD3	Mouse mAB	T cells	Acute rejection of liver, heart,
(Orthoclone OKT3)		(CD3, a T-cell antigen)	and kidney transplants
Abciximab	Human-mouse	Clotting receptor of platelets (GP IIb/IIIa)	Blood clotting during angioplast
(ReoPro)	chimeric		and other cardiac procedures
Daclizumab	Humanized mAB	Activated T cells	Acute rejection of
(Zenapax)		(IL-2 receptor alpha subunit)	kidney transplants
Inflixibmab	Human-mouse	Tumor necrosis factor (TNF), a mediator of inflammation (TNF)	Rheumatoid arthritis
(Remicade)	chimeric		and Crohn's disease
Palivizumab	Humanized mAB	Respiratory syncytial virus (RSV)	RSV infection in
(Synagis)		(F protein, a component of RSV)	children, particularly infants
Gemtuzumab (Mylotarg)	Humanized mAB	Many cells of the myeloid lineage (CD33, an adhesion molecule)	Acute myeloid leukemia (AML)
Alemtuzumab	Humanized mAB	Many types of leukocytes	B-cell chronic
(Campath)		(CD52 a cell surface antigen)	lymphocytic leukemia
Trastuzumab	Humanized mAB	An epidermal growth factor	HER2-receptor-positive
(Herceptin)		receptor (HER2 receptor)	advanced breast cancers
Rituximab	Human-mouse chimeric	B cells	Relapsed or refractory
(Rituxan)		(CD20, a B-cell surface antigen)	non-Hodgkins lymphoma
Ibritumomab	Mouse mAB	B cells	Relapsed or refractory
(Zevalin)		(CD20, a B-cell surface antigen)	non-Hodgkins lymphoma
SOURCE: Adapted from P.	Carter. 2001, Improving the effici	acy of antibody-based cancer therapies, Na	ture Reviews/Cancer 1:118.

The End