

SO...cytokines can have many effects, depending on: The target cell The state of differentiation/activation of the target cell The presence or absence of other cytokines

			•
IL-1	IL-2	IL-3	IL-4
IL-5	IL-6	IL-7	IL-8
IL-9	IL-10	IL-11	IL-12
IL-13	IL-15	IL-16	IL-17
IL-18	IL-19	IL-20	IL-21
IL-22	IL-23		
IFN-α	IFN-β	IFN-γ	
TNF-α	TNF-β		
TGF-β1			
M-CSF	G-CSF	GM-CSF	

Cytokine [†]	Secreted by*	Targets and effects			
SOME CYTOKINES OF INNATE IMMUNITY					
Interleukin 1 (IL-1) Monocytes, macrophages, Vasculature (inflammation); hypothalamus (fever); endothelial cells, epithelial cells liver (induction of acute phase proteins)					
Tumor necrosis factor-α (TNF-α)	Macrophages	Vasculature (inflammation); liver (induction of acute phase proteins); loss of muscle, body fat (cachexia); induction of death in many cell types; neutrophil activation			
Interleukin 12 (IL-12)	Macrophages, dendritic cells	NK cells; influences adaptive immunity (promotes T _H 1 subset)			
Interleukin 6 (IL-6)	Macrophages, endothelial cells	Liver (induces acute phase proteins); influences adaptive immunity (proliferation and antibody secretion of B cell lineage)			
Interferon α (IFN-α) (this is a family of molecules)	Macrophages	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells			
Interferon β (IFN-β)	Fibroblasts	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells			
	SOME CYTOKINES OF	ADAPTIVE IMMUNITY			
terleukin 2 (IL-2) T cells T-cell proliferation; can promote AICD. NK cell activation and proliferation; B-cell proliferation					
Interleukin 4 (IL-4)	T _H 2 cells, mast cells	Promotes T _H 2 differentiation; isotype switch to IgE			
Interleukin 5 (IL-5)	T _H 2 cells	Eosinophil activation and generation			
Transforming growth factor β (TGF-β)	T cells, macrophages, other cell types	Inhibits T-cell proliferation and effector functions; inhibits B-cell proliferation; promotes isotype switch to IgA; inhibits macrophages			
Interferon γ (IFN-γ)	T _H 1 cells, CD8 ⁺ cells, NK cells	Activates macrophages; increases expression MHC class I and class II molecules; increases antigen presentation			
to synthesize the given cytokine.	ng cytokines for the indicated activity ar	re listed; other cell types may also have the capacity			

	Cytokines and Immune Responses
Best way to learn	Proinflammatory cytokines
	TNF
	IL-1
	IL-6
	chemokines (many)
	Antiinflammatory cytokines
· · · · · · · · · · · · · · · · · · ·	IL-10
about	IL-1ra
	TGF-β
cytokines is	Inhibition of virus replication
by their action !!!	IFN-α, -β
	Macrophage-activating cytokines
	IFN-γ
	B cell-activating cytokines
	IL-4
	IL-5
	IL-6
	IL-21
	T cell-activating cytokines
	IL-2 II -4
	IL-4 IL-12
	IFN-y
	Eosinophil- and/or mast cell-activating cytokines
	IL-3 II -4
	IL-4 II-13
	IL-13 IL-5

Four Structural Families

- Hematopoietin Family (IL-2, IL-4)
- Interferon Family (IFN- α , β , γ)
- Chemokine Family
- Tumor necrosis family

Based on structural homology, there are five major cytokine receptor families:

- Ig superfamily receptors
- Class I receptors (Hematopoietin receptor family)
- Class II receptors (Interferon receptor family)
- TNF receptor family
- Chemokine receptors
- TGF receptor family

RECEPTOR FAMILY	LIGAN	DS
	IL-2	IL-21
Class I cytokine receptors	IL-3	IL-23
(hematopoietin)	IL-4	IL-27
· · · · · · · · · · · · · · · · · · ·	IL-5	GM-CSF
	IL-6	G-CSF
Conserved	IL-7	OSM
	IL-9	LIF
	IL-11	CNTF
	IL-12	Growth hormone
	IL-13	Prolactin
	IL-15	
Figure 12-6b Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company		

	Shared Cytokine-Receptor Subunits		
	Shared receptor chain Cytokines recognized		
с	γ _c	IL-2, -4, -7, -9, -15, -21	
A	IL-2Rβ	IL-2, IL-15	
	IL-4Rα	IL-4, -13	
	IL-13Ra1	IL-4, -13	
	βc	IL-3, -5, GM-CSF	
в	gp130	IL-6, -11, -27, -31, LIF, OSM, CNTF, CT-1, CLC	
	IL-12Rβ1	IL-12, -23	
	IL-10R2	IL-10, -22	
	IL-20R2	IL-20, -19, -24	
	IL-22R	IL-22, -24, -20	

IL-2 Receptor

- Composed of 3 subunits: α , β , and γ chains
- IL-2 receptor is present in 3 forms: low, medium, and high affinity
- The low affinity (monomeric, IL-2Rα), medium affinity (dimeric, IL-2Rαβ), and high affinity (trimeric, IL-2Rαβγ)
- Binding component: α chains
- Transducing components: β and γ chains.
 - * Boy in the Bubble → the absence of a functional IL-2R -chain protein.

Different receptors associate with different JAK/STAT combinations

TABLE 12-2STAT AND JAKINTERACTION WITH SELECTEDCYTOKINE RECEPTORS DURINGSIGNAL TRANSDUCTION

Cytokine receptor	JAK	STAT
IFN-γ	JAK1 and JAK2	Stat1
IFN-α/β	JAK1 and Tyk-2	Stat2
IL-2	JAK1 and JAK3	Stat5
IL-3	JAK2	Stat5
IL-4	JAK1 and JAK3	Stat6
IL-6	JAK1 (and sometimes others)	Stat3
IL-10	JAK1 and Tyk-2*	Stat3
IL-12	JAK2 and Tyk-2*	Stat4

SOURCE: Adapted from Bach, Aguet, and Schreiber, 1997, Annu. Rev. Immun. 15:563.

Cytokine Antagonists					
	TABLE 12-3	Viral mimics of cytokines and cytokine receptors			
Action:	Virus		Products		
 Blocking the receptor (IL- 	Leporipoxvirus (a myxoma viru	s)	Soluble IFN-y receptor		
1Ra), and	Several poxviruses		Soluble IFN-γ receptor		
2) Binding to the	Vaccinia, smallpox virus		Soluble IL-1β receptor		
cytokine (IL-2,	Epstein-Barr		IL-10 homolog		
IFN-γ)	Human herpes	rirus-8	IL-6 homolog; also homologs of the chemokines MIP-I and MIP-II		
	Cytomegalovirus		Three different chemokine receptor homologs, one of which binds three different soluble chemokines (RANTES, MCP-1, and MIP-1 α)		
,	Table 12-3 Tuby MMUNOLOGY, Sixth Edition 2 2007 W. H. Freeman and Company				

 T_{H} 1 cells produce cytokines (IFN- γ and IL-2) that promote immune responses against intracellular pathogens (DTH, cytotoxic T cell responses, macrophage activation, opsonizing Abs).

 $T_{\rm H} 2 \ cells \ produce \ cytokines \ (IL-4, IL-5, IL-6, IL-13) \\ that \ promote \ immune \ responses \ against \\ extracellular \ pathogens \ (antibody \ responses \\ IgE/IgG1, \ eosinophilic \ responses, \ allergic \\ reactions).$

Some cytokines are produced by both T_H1 and T_H2 cells. These cytokines - GM-CSF and IL-3 - act on the bone marrow to increase production of leukocytes - so they are needed no matter what type of pathogen is present.

Cytokine cross-regulation

- IFN- γ (Th-1) inhibits proliferation of Th-2
- IL-4 and IL-10 (Th-2) inhibits proliferation of Th-1 by decreasing IL-12 production
- INF-γ (Th-1) promotes IgG2a production and decreases IgG1 and IgE by B cells
- IL-4 (Th-2) promotes production of IgE and IgG1 by B cells and decreases IgG2a.

Cytokine & Diseases

Bacterial Septic Shock

- Due to several Gram (-) bacteria
- Stimulation of Macrophages & DCs by LPS ${\boldsymbol{\rightarrow}}\uparrow$ TNF-a, IL-1 β
- Drop in blood pressure, fever, diarrhea, systemic blood clotting in various organs, increased respiratory rate, capillary leakage, etc

Bacterial Toxic Shock

- Caused by superantigens (wide variety of toxins)
- Activation of T cells $\Rightarrow\uparrow$ cytokines from T cells and activated MØ $(\uparrow$ TNF-\alpha, IL-1\beta)
- Infectious Diseases
 - Leprosy, Chagas Disease (\downarrow IL-2R α).

Glucocorticoid hormones can influence ongoing immune responses -particularly suppressing inflammatory responses.

Sex hormones also influence immune responses - e.g. females tend to be more prone to autoimmune disorders than males.

Stress may suppress Th1 immune responses.

Figure 11.20

