Chapter 13: Cytokines

Definition: secreted, low-molecular-weight proteins that regulate the nature, intensity and duration of the immune response by exerting a variety of effects on lymphocytes and/or other cells

- Cytokines bind to specific receptors on target cells.
- Originally were called **lymphokines** because they were initially thought to be produced only by lymphocytes. Then **monokines** because they were secreted by monocytes and macrophages. Then **interleukin** because they are produced by some leukocytes and affect other leukocytes. The term "cytokine" is now used more widely and covers all of the above.
- Don't forget chemokines, they are also considered cytokines.

2. Cytokines can be redundant ... different cytokines can have the same effects.

(a) Target Cell Effect

REDUNDANCY

IL-2

IL-2

Activated T_H cells

B cell

Kuby Fig 12-2a

6. Cytokines can influence the expression of cytokine receptors.

B

Receptor transmodulation

Up regulation

Down regulation

Negative

IL-2 RECEPTOR

TGFB

SO...cytokines can have many effects, depending on:

- the target cell
- the state of differentiation/activation of the target cell
- the presence or absence of other cytokines

Cytokine†	Secreted by [‡]	Targets and effects			
SOME CYTOKINES OF INNATE IMMUNITY					
Interleukin 1 (IL-1)	Monocytes, macrophages, endothelial cells	Vasculature (inflammation); hypothalamus (fever); liver (induction of acute phase proteins)			
Tumor necrosis factor-α (TNF-α)	Macrophages	Vasculature (inflammation); liver (induction of acute phase proteins); loss of muscle, body fat (cachexia); induction of death in many cell types; neutrophil activation			
Interleukin 12 (IL-12)	Macrophages, dendritic cells	NK cells; influences adaptive immunity (promotes T _H 1 subset)			
Interleukin 6 (IL-6)	Macrophages, endothelial cells	Liver (induces acute phase proteins); influences adaptive immunity (proliferation and antibody secretion of B cell linea			
Interferon α (IFN-α) (this is a family of molecules)	Macrophages	Induces an antiviral state in most nucleated cells; increases Mi class I expression; activates NK cells			
Interferon β (IFN-β)	Fibroblasts	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells			
	SOME CYTOKINES OF	ADAPTIVE IMMUNITY			
Interleukin 2 (IL-2)	T cells	T-cell proliferation; can promote AICD. NK cell activation and proliferation; B-cell proliferation			
Interleukin 4 (IL-4)	T _H 2 cells, mast cells	Promotes T _H 2 differentiation; isotype switch to IgE			
Interleukin 5 (IL-5)	T _H 2 cells	Eosinophil activation and generation			
Transforming growth factor β (TGF-β)	T cells, macrophages, other cell types	Inhibits T-cell proliferation and effector functions; inhibits B-cell proliferation; promotes isotype switch to IgA; inhibits macrophages			
Interferon γ (IFN-γ)	T _H 1 cells, CD8 ⁺ cells, NK cells	Activates macrophages; increases expression MHC class I and class II molecules; increases antigen presentation			
to synthesize the given cytokine.		re listed; other cell types may also have the capacity			

Four Structural Families

- Hematopoietin Family (IL-2, IL-4)
- Interferon Family (IFN- α , β , γ)
- · Chemokine Family
- Tumor necrosis family

Based on structural homology, there are five major cytokine receptor families:

- Ig superfamily receptors
- Class I receptors (Hematopoietin receptor family)
- Class II receptors (Interferon receptor family)
- TNF receptor family
- Chemokine receptors
- TGF receptor family

Three subfamilies of the class I cytokine receptor family (hematopoietin)

Cytokine receptors

 Sharing of signal transducing molecules explains the **redundancy** and **antagonism** exhibited by some cytokines

IL-2 Receptor

- Composed of 3 subunits: α , β , and γ chains
- IL-2 receptor is present in 3 forms: low, medium, and high affinity
- The low affinity (monomeric, IL-2R α), medium affinity (dimeric, IL-2R α β), and high affinity (trimeric, IL-2R α $\beta\gamma$)
- Binding component: α chains
- Transducing components: β and γ chains.

Different receptors associate with different **JAK/STAT** combinations

TABLE 12-2 STAT AND JAK INTERACTION WITH SELECTED CYTOKINE RECEPTORS DURING SIGNAL TRANSDUCTION

Cytokine receptor	JAK	STAT
IFN-γ	JAK1 and JAK2	Stat1*
IFN-α/β	JAK1 and Tyk-2	Stat2
IL-2	JAK1 and JAK3	Stat5
IL-3	JAK2	Stat5
IL-4	JAK1 and JAK3	Stat6*
IL-6	JAK1 (and sometimes others)	Stat3
IL-10	JAK1 and Tyk-2*	Stat3
IL-12	JAK2 and Tyk-2*	Stat4*

*Despite its name, Tyk-2 is also a Janus kinase SOURCE: Adapted from Bach, Aguet, and Schreiber, 1997, Annu. Rev. Immun. 15:563.

Cytokine Antagonists Viral mimics of cytokines and TABLE 12-3 cytokine receptors Action: Products 1) Blocking the Leporipoxvirus (a myxoma virus) Soluble IFN-γ receptor receptor (IL-1Ra), and Several poxviruses Soluble IFN-γ receptor 2) Binding to the Vaccinia, smallpox virus Soluble IL-1B receptor Epstein-Barr IL-10 homolog

Human herpesvirus-8

Cytomegalovirus

IL-6 homolog; also homologs of the chemokines MIP-I and MIP-II

Three different chemokine receptor homologs, one of which binds three different

soluble chemokines (RANTES. MCP-1, and MIP-1α)

cytokine (IL-2,

IFN-y)

CD4+ helper T cell							
	Thi	Th2					
CTL response Viral infections	IL-2 IFN-7	П4 П5	B cell response Extracellular bacteria				
	TNF-β	IL-6					
DTH Intracellular bacteria	IL-3 GM-CSF	IL-10 IL-13	Eosinophilia Helminthic parasites				
		IL-3 GMCSF					

T_H1 cells produce cytokines (IFN-y and IL-2) that promote immune responses against intracellular pathogens (DTH, cytotoxic T cell responses, macrophage activation, opsonizing Abs).

T_H2 cells produce cytokines (IL-4, IL-5, IL-6, IL-13) that promote immune responses against extracellular pathogens (antibody responses IgE/IgG1, eosinophilic responses, allergic reactions).

Some cytokines are produced by both T_H1 and T_H2 cells. These cytokines - GM-CSF and IL-3 - act on the bone marrow to increase production of leukocytes - so they are needed no matter what type of pathogen is present.

Cytokine cross-regulation

- IFN-γ (Th-1) inhibits proliferation of Th-2
- IL-4 and IL-10 (Th-2) inhibits proliferation of Th-1 by decreasing IL-12 production
- INF-γ (Th-1) promotes IgG2a production and decreases IgE by B cells
- IL-4 (Th-2) promotes production of IgE and IgG1 by B cells and decreases IgG2a.

Cytokine & Diseases

• Bacterial Septic Shock

- Due to several Gram (-) bacteria
- Stimulation of Macrophages by LPS → ↑ TNF-α, IL-1β
- Drop in blood pressure, fever, diarrhea, systemic blood clotting in various organs

• Bacterial Toxic Shock

- Caused by superantigens (wide variety of toxins)
- Activation of T cells → ↑ cytokines from T cells and activated MØ (↑ TNF-α, IL-1β)
- · Infectious Diseases
 - Leprosy, Chagas Disease (\downarrow IL-2R α).

Neuroendocrine regulation

IL-1, IL-6 and TNF-α can induce production of glucocorticoids by acting on the hypothalamic-pituitary-adrenal (HPA) axis.

Figure 11.19

The End, but interesting material next!!

