Chapter 5

Organization and Expression of Immunoglobulin Genes

Genetic Models

- How to account for :
 - 1) Vast diversity of antibody specificities
 - 2) Presence of Variable regions at the amino end of Heavy and Light chains, and a Constant region at the carboxyl end
 - 3) Existence of isotypes (different Heavy chains) with same antigenic specificity

Models to Explain Antibody Diversity

- 1) **The Germ Line Theory**: "genome posses the large repertoire of antibody genes to account for all the antibody diversity"
- 2) **The Somatic Variation Theory**: "genome posses a relatively small number of antibody genes and diversity is generated by mutation and recombination of these genes during somatic development"

The two-gene model

- Developed by Dreyer and Bennet in 1965
- Two separate genes code for the Heavy and Light chains. One codes for the V region and the other for the C region
- These genes come together during at the DNA level to form a continuous message
- There are thousands of V genes in germ line but only one gene for the C region

Two	 loci encoding t kappa locus lambda locus 	he light chains	
- One	locus encoding	the heavy chain	
These	three loci are loc	ated on different chromosome	S.
		Chromosomal locations	of
	TABLE 5-1	immunoglobulin genes human and mouse	in
	TABLE 5-1	immunoglobulin genes human and mouse снгом	оѕоме
	Gene	immunoglobulin genes human and mouse CHROM Human	in OSOME Mouse
	TABLE 5-1 Gene λ Light chain	immunoglobulin genes human and mouse CHROMU Human 22	in osoме Mouse 16
	TABLE 5-1 Gene λ Light chain κ Light chain	immunoglobulin genes human and mouse CHROMU Human 22 2	in OSOME Mouse 16 6

Generation of antibody diversity

- 1. Multiple germline V, D and J gene segments
- 2. Combinatorial V-J and V-D-J joining
- 3. Somatic hypermutation
- 4. Junctional flexibility
- 5. P-nucleotide addition
- 6. N-nucleotide addition
- 7. Combinatorial association of heavy and light chains

Combinatorial V-J and V-D-J joining

• Humans:

– Heavy Chain: V (51), D (27), J (6) = 8262

– Light Chain: Kappa – V (40), J (5) = 200

Lambda – V(30), J (4) = 120

 $8262 \text{ x} (200 \text{ x} 120) = 2.64 \text{ x} 10^{6}$

Junctional flexibility

- Generated through V, D and J combinations
- Joining of Recombination Signal Sequences = <u>Signal Joint</u>
- Joining of Coding Sequences = <u>Coding</u> Joint
- Signal Joints ALWAYS joined precisely, but joining of Coding Joints is IMPRECISE
- Good = Antibody diversity
- BAD = Non=productive rearrangements

P-nucleotide addition

- Cleavage of the Hairpin at the end of the coding sequence by endonuclease (Artemis) is random
- Generates a short single strand of nucleotides at the end of the Coding sequence
- Addition of complementary nucleotides to this strand forms a palindrome sequence (P nucleotides)

TABLE 5-3	in complementarity-determining regions of immunoglobulin heavy- and light-chain genes				
Source of variation	CDR1	CDR2	**** CDR3		
Sequence encoded by:	V segment	V segment	V _L -J _L junction; V _H -D _H -J _H junctions		
Junctional flexibility	-	-	+		
P-nucleotide addition	-	-	+		
N-nucleotide addition*	-	-	+		
Somatic hypermutation	+	+	+		

ALLELIC EXCLUSION:

- -We have two copies (alleles) of each Ig gene one inherited from our father and one from our mother.
- In most cases, both genes are expressed.
- But Antibody genes are different! Only one heavy chain allele and one light chain allele is expressed!!!
- This is termed allelic exclusion (one allele is excluded). Once a productive arrangement is made, the other allele is suppressed
- Why? To ensure that each B cell makes antibody of a single specificity.

• Players in regulation: 1) switch regions, 2) switch recombinases, 3) cytokine signals

AID Enzyme

- Activation induced cytidine deaminase
- RNA editing enzyme
- Deamination of cytosine → uracyl → repair induces base modifications!!!
- Mediates SOMATIC HYPERMUTATION, GENE CONVERSION, and CLASS switching recombination

Expression of membrane or secreted Immunoglobulin

- In mature B cells → membrane forms; in Plasma cells → secreted forms
- Process depends on <u>differential processing</u> of primary transcript
- Remember: IgG, IgD, IgA (3 C_H domains), IgM and IgA (4 C_H domains).
- Domain 3/4 contains the Secretory (hydrophilic) nucleotide sequence (S) at its 3'.
- Two Exons at 3' encode the M1 (trans-membrane) and M2 (cytoplasmic) segments.
- Primary transcript contains two PolyA sites: If cleavage at Poly A site I = Secreted Form. If cleavage at PolyA site 2 = Membrane Form

antibody [mAB]	Nature of	Target	Treatment for
(product name)	antibody	(antibody specificity)	
Muromonab-CD3	Mouse mAB	T cells	Acute rejection of liver, heart,
(Orthoclone OKT3)		(CD3, a T-cell antigen)	and kidney transplants
Abciximab	Human-mouse	Clotting receptor of platelets	Blood clotting during angioplasty
(ReoPro)	chimeric	(GP llb/llla)	and other cardiac procedures
Daclizumab	Humanized mAB	Activated T cells	Acute rejection of
(Zenapax)		(IL-2 receptor alpha subunit)	kidney transplants
Inflixibmab	Human-mouse	Tumor necrosis factor (TNF), a	Rheumatoid arthritis
(Remicade)	chimeric	mediator of inflammation (TNF)	and Crohn's disease
Palivizumab	Humanized mAB	Respiratory syncytial virus (RSV)	RSV infection in
(Synagis)		(F protein, a component of RSV)	children, particularly infants
Gemtuzumab	Humanized mAB	Many cells of the myeloid lineage	Acute myeloid
(Mylotarg)		(CD33, an adhesion molecule)	leukemia (AML)
Alemtuzumab	Humanized mAB	Many types of leukocytes	B-cell chronic
(Campath)		(CD52 a cell surface antigen)	lymphocytic leukemia
Trastuzumab	Humanized mAB	An epidermal growth factor	HER2-receptor-positive
(Herceptin)		receptor (HER2 receptor)	advanced breast cancers
Rituximab	Human-mouse chimeric	B cells	Relapsed or refractory
(Rituxan)		(CD20, a B-cell surface antigen)	non-Hodgkins lymphoma
Ibritumomab	Mouse mAB	B cells	Relapsed or refractory
(Zevalin)		(CD20, a B-cell surface antigen)	non-Hodgkins lymphoma

- RAG-1/RAG-2 cleave ONE strand of DNA
- This occurs at the border of the RSS heptamer and the coding gene
- The 3' OH group attacks a phosphodiester bond on the other DNA strand
- This results in hairpin DNA strand on the coding region.
- Other enzymes get involved and remove the "junk" and bring together the coding regions

