

BIO401 Immunobiology

BOOK – Kuby 5th Edition

EXAMS - 3 exams - 100 points each Final--> 100 points Cases→ 50 points TOTAL: 450 points

FINAL GRADE: Lab: 25% (300 points) Lecture: 75% (450 points)

LAB MANUAL

UT&T University Text & Tools 1800 S. Milton Rd. Suite 100 Flagstaff, AZ 86001

Phone: 928-779-2260 Fax: 928-779-1449 Store Mgr.: Jack Norris email:jnorris@nebook.com website: <u>www.univ-text-tools.com</u>

Readiness Exam

- 1. Mention a difference between a Gram + and Gram (-) bacteria
- 2. What is an antibody?
- 3. What is a difference between an antigen and an antibody?
- 4. What cells produce antibodies?
- 5. What cells carry out the cellular immunity?

The immune system:

"A system of cells and tissues that function to protect the body from invasion by a wide range of organisms - including viruses, bacteria, protozoans, fungi and helminthic worm parasites".

E.coli bacteria adhering to epithelial cells of the urinary tract.

How important is the immune system?

Individuals with significant defects in immunity (e.g. AIDS, genetically inherited syndromes - "boy in the bubble") - succumb rapidly to infection.

Plague bacteria (*Yersinia pestis*) cause swelling of lymph nodes – "buboes"

http://www.insecta-inspecta.com/fleas/bdeath/Black.html

http://www.cdc.gov/ncidod/dvbid/plague/diagnosis.htm

http://www.immunisation.org.uk/history.html

14th – 17th centuries : variolation used in China

-Powdered scabs of smallpox pustules were inhaled (or rubbed into scratches in the skin) to protect from smallpox

17th century – practice spread to Turkish regions

1718 – Lady Mary Wortley Montagu, wife of the British ambassador to Constantinople, allowed her children to be treated with the procedure \rightarrow Europe

Variolation

Edward Jenner

- Meanwhile, it was commonly believed that milkmaids who had had cowpox were resistant to smallpox.
- Cowpox is a relatively benign disease in both humans and cows.
- 1774 Edward Jenner inoculates individuals with cowpox in order to protect them from smallpox. Individuals receiving the cowpox did not develop smallpox in subsequent outbreaks of the disease.

Adaptive or Acquired Immunity

• Characteristics:

a) highly specific (antigen),

b) diversity (109-11) potential recognitions,

c) memory,

d) self/non-self recognition (MHC molecules,e) self-regulation (turning off responses)

Acquired Responses

• Involve the interaction between: Antigen-presenting cells (Macrophages, Dendritic cells and B cells) and lymphocytes (B and T)

a) <u>B cells</u>:

- Originate and mature in bone marrow
- Mature B cells a unique receptor = antibody molecule
- Membrane antibody molecule recognizes antigen <u>alone</u>
- "Activated B cell" → polyclonal activation → Plasma Cells → Secreted antibody.

**Memory B cells are generated in every response

Acquired Responses

T cells:

- Originate in BM and mature in thymus
- In thymus they acquire a unique membrane receptor = T cell receptor (TCR). The TCR recognizes antigen when bound or presented by major histocompatibility complex (MHC) molecules
- MHC molecules are polymorphic membrane proteins
- Two major types: MHC-I and MHC-II
- MHC-I: expressed in all nucleated cells, two chains: α and $\beta 2\text{-microglubulin}$
- MHC-II: expressed in antigen presenting cells, two chains: α and β chains.

Acquired Responses

 Antigen + MHC → "Activated T cell" → polyclonal activation → Memory T cells + Effector T Cells (cytokines or cytotoxicity)

T cells subpopulations:

- a) T helper (Th) and T cytotoxic (Tc)
- b) T helper (Th) express a CD4 membrane marker
- c) T cytotoxic (Tc) express a CD8 membrane marker
- d) T helper (Th) cells interact with antigen presented by MHC-II molecules
- Activation lead to secretion of cytokines → multiple effects e) T cytotoxic (Tc) cells interact with antigen presented by MHC-I
 - molecules -Activation lead to cell killing (cytotoxicity)
 - **Memory T cells are generated in every response

Antigen presenting cells (APC)

- Three types: Macrophages, Dendritic cells and B cells
- Goal: activation of Th cells
- <u>Requirement:</u>
 - 1) Express MHC-II
 - 2) Provide co-stimulatory signal for activation
- Uptake antigen by phagocytosis → processing → present antigen + MHC-II molecule

Clonal Selection Theory

- Specificity of recognition receptors in B (surface antibody) and T cells (T cell receptor) is acquired in primary lymphoid organs through a complex gene re-arrangement event
- Mature T or B cells encounter the antigen and the cell with the respective "specificity" is selected to undergo polyclonal activation leading to **effector responses** and **memory cell production**

TABLE 1-3	Comparison of adaptive and innate immunity	
	Innate	Adaptive
Response time	Hours	Days
Specificity	Limited and fixed	Highly diverse, improves during the course of immune response
Response to repeat infection	Identical to primary response	Much more rapid than primary response

When things go wrong!

- Immune dysfunction can lead to:
 - a) Allergy and Asthma: Sensitize to allergen leading to allergic response
 - b) Graft rejection and Graft versus host disease: non-self rejection mediated by MHC molecules
 - c) Autoimmune Disease: loss of self-recognition leading to immunological attack (Crohn's disease, Rheumatoid arthritis, Multiple sclerosis)
 - d) Immunodeficiency: loss of components from innate and acquired immunity (AIDS)

Acquired Responses

T cells:

- T helper (Th) cells interact with antigen presented by MHC-II molecules

- Activation lead to secretion of cytokines \rightarrow multiple effects

- T cytotoxic (Tc) cells interact with antigen presented by MHC-I molecules

- Activation lead to cell killing (cytotoxicity)

**Memory T cells are generated in every response