- MHC molecules were initially discovered during studies aimed at understanding the molecules responsible for rejection of transplanted tissues.

- Hence the name “Major Histocompatibility Complex” (MHC).

- The term “Major Histocompatibility Complex” actually refers to a region of the genome that encodes a number of genes (hence Complex) that play an important (hence Major) role in tissue transplantation (hence Histocompatibility).

- The term “MHC molecule” or “MHC antigen” refers to a molecule encoded by a gene within this region.

In humans:

- **Class I** = A, B and C (also called HLA-A, HLA-B and HLA-C)
 - Ag (peptide) presentation to CD8+ cells

- **Class II** = DP, DQ and DR (also called HLA-DP, HLA-DQ and HLA-DR)
 - Ag (peptide) presentation to CD4+ cells

- **Class III** = Complement proteins, Tumor necrosis factor (TNFs)-α, β

In the Mouse:

- **Class I** = K, D and L molecules (also called H-2D, H-2K and H-2L)

- **Class II** = A and E (also called I-A and I-E)

- **Class III** = Complement proteins, Tumor necrosis factor (TNFs)-α, β
MHC- Polimorphism

- MHC loci are highly polymorphic – presence of many alternative forms of the gene or alleles in the population
 - Inherited from mother and father
 - New haplotypes are generated by recombination

Polymorphism of MHC antigens (based on phenotype)

![Bar Chart](image)

Polymorphism of MHC genes (based on DNA sequence/ PCR)

![Bar Chart](image)

MHC polymorphism

The loci that encode class I and class II MHC molecules are the most polymorphic known in higher vertebrates.

Within any species, there are many different alleles for each class I and class II MHC molecule.

Humans:
- HLA Class-I genes: A (240), B (470), C (110) alleles (1.2 x 10^7)
- HLA Class-II genes:
 - DP= DPB1 (96) alleles
 - DQ= DQA1 (22), DQB1 (49) alleles
 - DR= DRB1 (304), DRB1 (1), DRB1 (30), DRB1 (11), DRB1 (15) alleles
 - 1.8 x 10^{11} different Class II combinations, and
 - (1.2 x 10^7) x (1.8 x 10^{11}) = 2.25 x 10^{18} different combinations of Class I and Class II possible combinations

MHC- Polimorphism

- MHC loci are highly polymorphic – presence of many alternative forms of the gene or allele in the population
 - Inherited from mother and father
 - New haplotypes are generated by recombination

(c) Inheritance of HLA haplotypes in a typical human family

![Diagram](image)
MHC- Polimorphism

- MHC loci are highly polymorphic – presence of many alternative forms of the gene or allele in the population
- Inherited from mother and father
- New haplotypes are generated by recombination

(d) A new haplotype (R) arises from recombination of maternal haplotypes

<table>
<thead>
<tr>
<th>HLA Alleles</th>
<th></th>
<th></th>
<th>DR</th>
<th>DQ</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>7</td>
<td>w3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>8</td>
<td>w2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Haplotypes</td>
<td>C</td>
<td>44</td>
<td>w4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>11</td>
<td>35</td>
<td>w1</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>3</td>
<td>44</td>
<td>w4</td>
<td>7</td>
</tr>
</tbody>
</table>

Terminology:

- Haplotype: set of alleles present in each parental chromosome (two sets).
- Inbred mouse strains: same set of alleles (homozygous) at each locus (K, IA, IE, S, D).
- Inbred strains are SYNGENIC = identical at all genetic loci
- Inbred strains have been bred by brother-sister mating for > 20 generations
- Outbred mouse strains: different set of alleles at each locus ~ like humans.
- Congenic strains = genetically identical except at a single loci

Mouse Strains

- Thus, the strain C57BL/6 was designated H-2b haplotype and said to possess the ‘b’ allele at each MHC locus. Thus, it is: H-2b = Kb, Db, I-Ab, I-Eb
- Another strain, CBA/2 was found to possess different alleles than C57BL/10 and was arbitrarily designated as having the k haplotype (i.e. H-2k).
- Thus, it is: H-2k = Kk, Dk, I-Ak, I-Ek

Mouse Haplotypes – Inbred Strains

<table>
<thead>
<tr>
<th>MICE HAPLOTYPES – INBRED STRAINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 7-1 Mice haplotypes of various inbred strains</td>
</tr>
<tr>
<td>Homologous chromosomes with MHC loci</td>
</tr>
<tr>
<td>Parental strain</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>CBA/2</td>
</tr>
<tr>
<td>BALB/c</td>
</tr>
<tr>
<td>C57BL/6</td>
</tr>
<tr>
<td>A/J</td>
</tr>
<tr>
<td>129</td>
</tr>
<tr>
<td>C57BL/10</td>
</tr>
<tr>
<td>C57BL/6</td>
</tr>
<tr>
<td>CBA/2</td>
</tr>
</tbody>
</table>

Inheritance of MHC Haplotypes

(a) Matings of inbred mouse strains with different MHC haplotypes

Homologous chromosomes with MHC loci

![Diagram showing inheritance of MHC haplotypes](image-url)
There are three broad classes of MHC molecules:

Class I MHC:
- bind and present internally-derived peptide antigens to CD8+ cytotoxic T cells
- expressed on virtually all nucleated cells

Class II MHC:
- present externally-derived peptides to CD4+ helper T cells
- usually expressed only on antigen-presenting cells (APC)

Class III MHC: any other molecule encoded within the MHC - many types

The MHC of humans is also referred to as the HLA complex.
The MHC of mice is also referred to as the H-2 complex.

Summary:

- Heterodimers
 - Two noncovalently bound chains
 - Alpha chain - encoded in the MHC - transmembrane - 3 domains (1, 2, 3)
 - β2-microglobulin - not encoded in MHC - not transmembrane - 1 domain
 - Class I MHC cannot be expressed without β2-microglobulin

- α1 and α2 domains form the peptide-binding cleft
 - α3 domain performs a structural role but has no direct role in peptide binding
 - CD8 binds to the α3 domain
 - Both, MHC-I and β2-microglobulin belong to the Ig superfamily
 - Papain cleavage

Differential expression of MHC antigens

- Class-I expressed on all nucleated cells in man, and also on erythrocytes in mice.
- Class-II expressed primarily on antigen presenting cells (dendritic cells, macrophages and B cells, etc.)
Kuby Figure 7-10a

- β2-microglobulin shown in blue; antigen shown in red
- closed peptide-binding cleft - binds peptides 8-10 amino acids in length

Kuby Figure 7-5

MHC-II Molecule
- Heterodimers (different molecules)
- Two noncovalently bound chains
- α chain and β chain
- both encoded in the MHC
- both transmembrane
- both chains are necessary for expression of class II MHC

Kuby Figure 7-5

MHC-II Molecule
- α1 and β1 domains form the peptide-binding cleft
- α2 and β2 domains perform a structural role but have no direct role in peptide binding
- the β2 domain is bound by CD4

Kuby Figure 7-10b

- β chain shown in blue; antigen shown in red
- open peptide-binding cleft - binds peptides 13-18 amino acids in length

Class I genes - classical and non-classical

Figure 4.13

Class I genes - classical and non-classical
Peptide-MHC Interaction

- Peptide binding by MHC molecules is not as specific as antigen binding by antibodies or T cell receptors.
- Any particular MHC molecule will bind a large range of peptides - but not all peptides.
- A given MHC molecule will bind peptides that have certain amino acids at key positions in the peptide (anchor residues).
- Each MHC molecule binds a unique set of peptides. Keep in mind that each allelic variant also binds a unique set of peptides!!

MHC-Peptide Interaction

MHC-I:
- Each unique molecule (A, B or C) binds a unique set of peptides
- Single nucleated cell express 10^5 of each class I molecule
- As few as 100 peptide-MHC complexes are enough to target a cell for killing by CD8+
- Requirements: 1) 8-10aa length, 2) key amino acids at positions 2 and 9

Peptide-binding grooves for class I and class II MHC are structurally similar

- Both have a peptide-binding groove
- Close-ended groove for class I MHC requires an 8-10 amino acid-length peptide to bind
- Open-ended groove for Class II MHC lets it bind a peptide 13-18 amino acids long, not all of which lie in the groove
- Anchor site rules apply to both classes in particular Class I MHC (P2 and P9)
Aspects of MHC

1. Recognition by T cells requires cell-cell contact.
2. Peptides from cytosol associate with class I MHC and is recognized by Tc cells.
3. Peptides from endocytic vesicles associate with class II MHC and is recognized by Th cells.

Aspects of MHC (continued)

3. Although there is a high degree of polymorphism for a species, an individual has maximum of six different class I MHC products and eight class II MHC products.
4. A peptide must associate with a given MHC of that individual, otherwise no immune response can occur. That is one level of control.

Aspects of MHC (continued)

4. Mature T cells must have a T cell receptor that recognizes the peptide associated with MHC. This is the second level of control.
5. Each MHC molecule has only one binding site. The different peptides a given MHC molecule can bind all bind to the same site, but only one at a time.

Aspects of MHC (continued)

6. MHC polymorphism is determined only in the germline. There are no recombinational mechanisms for generating diversity.
7. Because each MHC molecule can bind many different peptides, binding is termed degenerate.
8. Cytokines (especially interferon-γ) increase level of expression of MHC.

Aspects of MHC (continued)

9. Alleles for MHC genes are co-dominant. Each MHC gene product is expressed on the cell surface of an individual nucleated cell.
10. Why the high degree of polymorphism?

 Survival of species!

Where is polymorphism located in the molecule?
INHERITANCE OF MHC HAPLOTYPES
(a) Mating of inbred mouse strains with different MHC haplotypes
Homologous chromosomes with MHC loci

<table>
<thead>
<tr>
<th></th>
<th>H-2b parent</th>
<th>H-2k parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-2b</td>
<td>b/b</td>
<td>k/k</td>
</tr>
</tbody>
</table>

F1 progeny (H-2k/b)

Crossing Inbred Strains
H-2b = K\(^b\), D\(^b\), L\(^b\), I-A\(^b\), I-E\(^b\)
X
H-2k = K\(^k\), D\(^k\), L\(^k\), I-A\(^k\), I-E\(^k\)

What would be the MHC complex of a liver cell in the F1?
In a macrophage?

- 6 MHC-I molecules:
 \(K^k K^h, D^k D^b, L^k L^b\)

- 8 MHC-II molecules:
 \(I\alpha^k \beta^k, I\alpha^b \beta^b, I\alpha^k \beta^k, I\alpha^b \beta^k, I\alpha^k \beta^b, I\alpha^b \beta^k, I\alpha^k \beta^k, I\alpha^b \beta^k,\)

Regulation of MHC Expression
- 1) Cytokines:
 - IFN-alpha, beta, gamma - ↑ Class-I expression.
 - IFN-gamma - ↑ Class-II expression in MO and DC
 - IL-4 - ↑ expression of MHC-II in resting B cells
 - IFN-gamma - ↓ expression of MHC-II in B cells
- 2) Corticosteroids and Prostaglandins
 - ↓ expression of MHC-II
- 3) Viruses (↓ expression of MHC-I)
 - Human cytomegalovirus (CMV)
 - Hepatitis B virus (HBV)
 - Adenovirus 12 (Ad12)

MHC and immune responsiveness:
In many cases, the ability of an inbred mouse strain to respond to a given antigen will depend on which alleles the strain carries at its MHC loci.

The reason is that if an antigen cannot bind to an MHC molecule, it cannot be presented to T cells and therefore an immune response cannot be made to it.

To respond to an antigen, the **first criterion** that must be met is that the individual must have an MHC molecule that can bind and present the antigen.

The **second criterion** that must be met is that the individual must have T cells capable of responding to the antigen.
The term “restricted” is used in various other ways:

T cells are MHC-restricted i.e. they must recognize antigen presented on MHC.

CD4+ T cells are class II MHC-restricted i.e. they must recognize antigen presented on class II MHC.

CD8+ T cells are class I MHC-restricted i.e. they must recognize antigen presented on class I MHC.

A particular T cell clone may be I-Ek-restricted i.e. it recognizes its antigen ONLY when presented on I-Ek.

("restricted" = "recognizes antigen on...")

Associations between MHC and disease

The risk of developing immunological diseases is often influenced by the presence or absence of specific MHC alleles.

Table 7.4: Some significant associations of HLA alleles with increased risk for various diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Relative Risk</th>
<th>HLA Allele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankylosing Spondylitis</td>
<td>90</td>
<td>B27</td>
</tr>
<tr>
<td>Hereditary hemochromatosis</td>
<td>90</td>
<td>A3/B14</td>
</tr>
<tr>
<td>Narcolepsy</td>
<td>130</td>
<td>DR2</td>
</tr>
</tbody>
</table>

The End!!

Self-MHC-restriction of T cells

Generally, T cells must recognize antigen on a self-MHC allele and so are said to be self-MHC restricted.

This is because T cells are "tuned" to recognize antigen complexed with self-MHC during T cell maturation in the thymus.