"We recognize that there is a good possibility that life exists in the solar system outside Earth, but if that life does exist it would be microbial, not the higher forms," said James Staley, a UW microbiology professor who is the principal investigator for astrobiology.
Likely sites for such life are Mars, where there is evidence of water, or the ice-clad moon Europa. The key to finding life in such forbidding environments is understanding how life exists in extreme conditions on Earth - such as hot springs in Yellowstone National Park, undersea vents where no sunlight penetrates and temperatures reach several hundred degrees, pools of brine within polar sea ice, and volcanic basalt formations.
"We have microbial systems on Earth that are good models for those on Mars or Europa, and those systems are poorly studied," Staley said. He added that such life forms were the precursor to advanced life on Earth, so their presence on other planets could signal the eventual evolution of advanced life there, as well.
The idea for an astrobiology program grew out of a special seminar, Planets and Life, offered at the university in 1996 shortly after the discovery of planets orbiting nearby stars and an announcement that NASA scientists possibly had found microbial fossils inside a Martian rock. That claim since has drawn much scientific skepticism, but the success of the seminar - it was attended by 30 graduate students and 20 post-doctoral researchers and faculty, and it sparked much campus excitement - laid a foundation for a program in astrobiology.
Click the Back button to return to the lesson.