African trypanosomes are protozoan parasites of medical and veterinary importance. In humans, *T. brucei gambiense* and *T. brucei rhodesiense* cause African sleeping sickness. In animals, the disease nagana is caused by the parasite *T. b. brucei*. These three subspecies of trypanosomes are morphologically indistinguishable and differ only in their host range and pathologic presentation. The difference in host specificity is caused by a nonimmune killing factor in human serum; the African sleeping sickness trypanosomes are resistant to this factor (1).

The trypanocidal activity of normal human serum has been localized to a minor subset of HDLs called TLF, with the majority of serum HDL being nontoxic (2). TLF differs from nonlytic HDLs in that it has a higher density (1.21 to 1.24 g/ml) and contains two characteristic apolipoproteins, L1 (94.5 kD) and LIII (45 kD) (2). L1 is composed of three subunits that are 45, 36, and 13.5 kD in size, whereas LIII consists of two apolipoproteins that comigrate, one a 45-kD protein and the other composed of 36- and 13.5-kD subunits. Reconstitution studies have shown that LIII is required for lysis in micellar form in combination with either L1 or A1, a major apolipoprotein found in HDLs (3).

To establish the identity of L1 and LIII, we determined their NH2-terminal sequenc- es. The subunits of TLF were isolated by two-dimensional gel electrophoresis (4) and the individual bands were analyzed by Edman degradation. The L1 and LIII 45-kD subunits yielded sequences that were identical to the uncleaved leader sequence of human paraoxonase-arylesterase. The NH2-termini of the L1 and LIII 36-kD subunits were identical to the β subunit of both haptoglobin and the haptoglobin-related protein. The L1 and LIII 13.5-kD subunits yielded sequences that were identical (allowing for one sequencing ambiguity) to the uncleaved leader sequence of the α subunit of the haptoglobin-related protein (Fig. 1). Haptoglobin has a similar signal sequence that is normally cleaved at maturation. Haptoglobin is initially translated as a precursor containing the α and β subunits; cleavage at Arg4 occurs after a disulfide bond has formed between the two subunits (5). By analogy, it is likely that the 36-kD protein is the β subunit of the haptoglobin-related protein.

Human serum paraoxonase-arylesterase associates with HDL2 and HDL3 (6) and is known to hydrolyze aromatic esters, although its physiological role is unknown. It was an unlikely candidate for the TLF toxicity because it is found in HDL2, which has been shown to be nontoxic (2). Haptoglo- bins are serum glycoproteins that bind free hemoglobin and decrease the loss of iron from the body; however, overloading of the cell with haptoglobin-hemoglobin complexes can cause iron toxicity with the formation of reactive free radicals (7). Although it is expressed in amounts that are one-thousandth those of haptoglobin (8), the haptoglobin-related protein is predicted to have functional domains that are similar to those of haptoglobin (9). Because the haptoglobin-related protein appears to be a potential toxin, we focused our studies on this protein.

To investigate whether the haptoglobin-related protein was a component of TLF, we measured TLF activity (2) in the presence of rabbit polyclonal antibodies to human haptoglobin that cross-react with the haptoglobin-related protein (Fig. 2A). These antibodies inhibited TLF-mediated lysis in a concentration-dependent fashion; this observation implies that the haptoglobin-related protein is part of the lytic molecule. In contrast, nonspecific rabbit polyclonal antibod- ies had no effect (10).

To determine whether the haptoglobin-related protein retained the ability to bind hemoglobin, we assayed for hemoglobin in purified TLF by means of size exclusion chromatography. Total protein absorbance at 280 nm (A280), heme protein absorbance at 407 nm (A407), and TLF lysis activity all col- eruted with an apparent molecular mass of 500 kD (Fig. 2B). Hemoglobin was also de- tected in TLF fractions by immunoblot anal-
ysis with antisera to human hemoglobin (10).

Haptoglobin has peroxidase activity when associated with hemoglobin (11). The possibility that TLF also has peroxidase activity was intriguing because the bloodstream forms of the African trypanosomes do not express catalase (12); this results in high intracellular concentrations of hydrogen peroxide (H$_2$O$_2$). These high concentrations of H$_2$O$_2$ make the cells extremely susceptible to oxidative damage (13, 14). Using the procedure of Connell and Smithies (11), we detected peroxidase activity in TLF, but not in the nonlytic fraction of human HDLs (Fig. 3A). Peroxidase activity in a sample was proportional to lytic activity (10).

We next investigated the possible role of peroxidase activity in TLF-mediated lysis. *Trypanosoma brucei* brucei was incubated in the presence of TLF with increasing concentrations of catalase. Because H$_2$O$_2$ freely diffuses through the cell membrane, catalase in the incubation medium should reduce both extracellular and intracellular H$_2$O$_2$ concentrations and thus protect the trypanosomes from peroxidase damage. We found that high concentrations of catalase completely inhibited TLF lysis (Fig. 3B), whereas catalase inactivated with 3-amino triazole and H$_2$O$_2$ had no protective effect. Treatment with 3-amino triazole alone had no effect on either TLF-mediated lysis or trypanosome viability (10). These results demonstrate that H$_2$O$_2$ is necessary for TLF-mediated lysis, and they suggest that TLF kills the trypanosome by oxidative damage.

We have established the role of the haptoglobin-related protein in the lysis of *T. b. brucei*. The identification of the haptoglobin-related protein in TLF is interesting in itself because it is direct evidence that these proteins are expressed (8, 15). It is also interesting that the haptoglobin-related protein and peroxidase both contain an uncleaved hydrophobic leader sequence. This finding may represent an important signal in the assembly of proteins into the TLF complex.

TLF and haptoglobin display similar characteristics. TLF is endocytosed and targeted to the lysosome, where it requires an acid pH to lyse trypanosomes (16). The haptoglobin-hemoglobin complex is targeted to the lysosomes of liver cells (17, 18) and has maximal peroxidase activity at pH 4 or lower (11). The involvement of the haptoglobin-related protein in TLF-mediated lysis is consistent with the observation that only some apes and Old World monkeys have lytic activity in their serum (19). The haptoglobin-related protein is the product of a gene triplcation event that

Fig. 1. Sequences of the NH$_2$-termini of the 45-, 36-, and 13.5-kD subunits of the LL and LIL proteins aligned with human paraoxonase and with the α and β subunits of the human haptoglobin-related protein (21). The "X" at position 11 of the 13.5-kD sequence indicates an unreadable amino acid. Abbreviations for the amino acid residues are: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.

Fig. 2. (A) Inhibition of TLF-mediated lysis by antibody to haptoglobin. Rabbit polyclonal antibodies to human haptoglobin (Sigma) were used. The immunoglobulin G fraction of antiserum was isolated and the specificity was established by a single arc of precipitation versus normal human serum and purified human haptoglobin. The lytic assay contained 200 μl of phosphate-buffered saline, 17 units of TLF (2.2 μg), and 100 μl of *T. b. brucei* (3 × 107 cells per milliliter) in F12 media (Gibco) supplemented with 15% fetal bovine serum. The mixture was incubated for 2 hours at 37°C with various amounts of antibodies to haptoglobin. A unit of activity is defined as the amount of TLF necessary to cause 50% lysis in a standard lysis assay. (B) Cofractionation of proteins, heme-containing proteins, TLF activity, and peroxidase activity. Purified TLF in phosphate-buffered saline was run on a TSK G3000 SW size exclusion column, and absorbance was measured at A$_280$ (proteins; □) and A$_405$ (heme-containing proteins; ●). The silica-based TSK G3000 SW column has a particle size of 10 μm and separates proteins 10 to 500 kD in size. TLF activity (▲) from each of the protein-containing fractions was determined as described (2). Void (V$_0$), apoferritin (443 kD), albumin (68 kD), and carbonic anhydrase (28 kD) were used as size standards and eluted in fractions 11, 13, 17, and 23, respectively.
Identification of a Dual Specificity Kinase That Activates the Jun Kinases and p38-Mpk2

Anning Lin, Audrey Minden, Horacio Martinetto, Francois-Xavier Claret, Carol Lange-Carter, Frank Mercurio, Gary L. Johnson, Michael Karin*

One Ras-dependent protein kinase cascade leading from growth factor receptors to the ERK (extracellular signal-regulated kinases) subgroup of mitogen-activated protein kinases (MAPKs) is dependent on the protein kinase Raf-1, which activates the MEK (MAPK or ERK) dual specificity kinases. A second protein kinase cascade leading to activation of the Jun kinases (JNKs) is dependent on MEK (MEK kinase). A dual specificity kinase that activates JNK, named JNKK, was identified that functions between MEK and JNK. JNKK activated the JNKs but did not activate the ERKs and was unresponsive to Raf-1 in transfected HeLa cells. JNKK also activated another MAPK, p38-Mpk2 (the mammalian homolog of HOGE1 from yeast), whose activity is regulated similarly to that of the JNKs.

Three distinct protein kinase cascades activate members of the MAPK group in yeast (1). One such cascade exists in vertebrates in which Raf activates the MEK group of MAPK kinases (MAPKKks) (2), which in turn activate the ERK group of MAPKs (3). Raf, however, shares little similarity with the yeast MAPKK kinases (MAPKKks) STE11 and BCK1, whose mammalian homolog is MEK (4). Several mammalian MAPKs, the JNKs (5) or stress-activated protein kinases (6) and p38 or Mrk2 (7), that are similarly activated by a wide range of physiological and stressful stimuli (5–9), have been molecularly cloned. Although MEKK can activate MEK (4, 10), it is a more efficient activator of the JNK cascade, mediating responses to oncogenic Ras and growth factors (11). We have now identified a JNK-activating protein kinase, JNKK, that acts between MEKK and JNK. JNKK also activates p38, thus explaining the similarity between its response to extracellular stimuli to that of JNK. However, it activates a different subset of MAPKs that is unresponsive to Raf-1. Hence, MEKK and JNKK form a protein kinase cascade that leads to JNK activation. This cascade, which stimulates C-Jun transcriptional activity, is distinct from the one involving Raf, MEK, and ERK.

Both JNK1 and p38 complement an osmoresponsive yeast mutant defective in the MAPK homolog HOGE1 (7, 8), suggesting that a mammalian homolog of PBS2, the MAPKK that activates HOGE1 (12), may also activate JNK1 (8), is their physiological activator. Because MEKK and JNK do not activate JNK (11), we searched for new mammalian MAPKKs that exhibit this function. Vertebrate complement DNA (cDNA) clones encoding potential MAPKKs—XMEK2 from Xenopus and its mouse homolog, MMA1-SEK1—have been isolated (13). We isolated and determined the sequence of their human homolog (14) (Fig. 1A), and a clone encoding a truncated version of this protein was isolated by Dizard et al. (15). The three vertebrate MAPK-like proteins are very similar to each other (>95% amino acid identity within the kinase domains) and are more similar to PBS2 than to other Saccharomyces cerevisiae MAPK homologs (16). Both the mouse and human MAPK-like proteins can partially complement a PBS2 deficiency (Fig. 1B) (17). Transformation with vectors encoding the mammalian MAPKk sequenc- allows pbs2+ cells to grow in the presence of 0.9 M NaCL, albeit somewhat more slowly than PBS2+ cells. Neither clone complemented a HOG1 deficiency or a double deficiency in MKK1 and MKK2 (17).

MMA1-SEK1 cDNA was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein (18), purified, and examined for its ability to activate GST-JNK1 in a coupled kinase assay using GST–C-Jun(1–79) (19) as a substrate (Fig. 2A). GST-JNK1 alone exhibited little activity.