The Expression of Alternative Mating Strategies

Stephen M. Shuster

BIO 666: Animal Behavior Fall 2009 Northern Arizona University

The Exp	pressi	ion	of
Mating	Strat	tegi	es

Depends on the *predictability* of mating opportunities *relative* to individual life span.

Three Patterns of Phenotypic Expression

Mendelian Strategies
Developmental Strategies
Behavioral Strategies.

1. Mendelian Strategies

Mating strategies controlled by *few loci* of major effect, which segregate in populations according to Mendelian rules.

Genetic/Life History Example

 α -, β - and γ -males in the marine isopod, Paracerceis sculpta

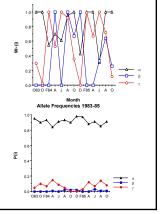
Mendelian Strategies

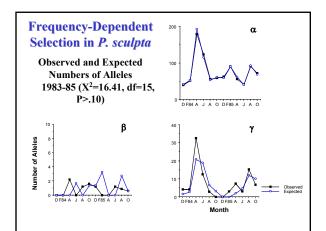
In these cases, *specific allelic combinations* produce morphologically and behaviorally distinct male phenotypes.

Mendelian Strategies Arise When

√ Sexual selection favors specialized mating phenotypes.

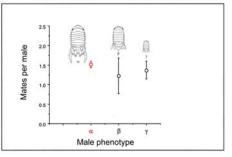
The relative mating success of each phenotype is *unpredictable* within male lifetimes.

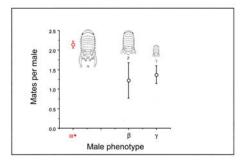

Unpredictable Mating Success


A morph is, *by chance*, well or poorly suited for securing mates in a given environment.

Its relative fitness, and its population frequency, *rises or falls* accordingly.

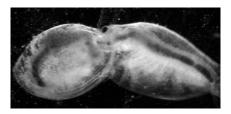
Variation in Frequency and Fitness Among Ams Alleles




Equal Fitnesses

Over longer durations, different morphs are expected to persist in the population because their average fitnesses *are equal*.

Equal Fitnesses Among Males $(N_{\alpha}=452; N_{\beta}=20; N_{\gamma}=83)$



With Unpredictable Mating Success,

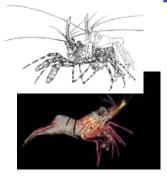
Phenotypic plasticity is *unlikely* to evolve.

Why?

Genes of major effect *exclude* genetic architectures that allow a variable response to environmental cues predicting mating success.

When cues are lacking, plasticity is *unnecessary*.

2. Developmental Strategies Discontinuous phenotypes produced by distinct developmental trajectories, which do not segregate in a Mendelian manner. **Developmental Strategies Arise When** √ Sexual selection favors specialized mating phenotypes. The relative mating success of each phenotype is *predictable* within male lifetimes. The time scale for change is long. Why? Phenotypic plasticity excludes genes of major effect when reliable cues predicting mating success *are* available. When cues are available, the phenotypes produced by major


genes are often incorrect.

Which Cues?

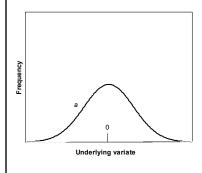
In many species, the environmental cue to which males respond appears to be their own growth rate.

In Some Species,

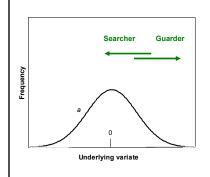
Slow growing males mature early as *satellites*. Males who cross a size threshold continue to grow and mature later as *territorials*.

In Other Species,

Rapidly growing males become satellites, and slower growers become territorials.



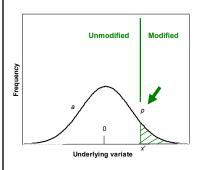
This Pattern Is Consistent With


the observed expression of *threshold characters*.

In Threshold Characters,

Genotypic AND phenotypic variation underlying characters (i.e., growth rate) are normally distributed.

If Selection is Strong,

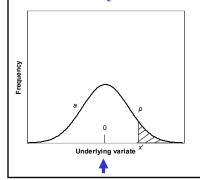

Distinct phenotypes are likely to evolve.

Searcher Guarder Wenviron cues the success early

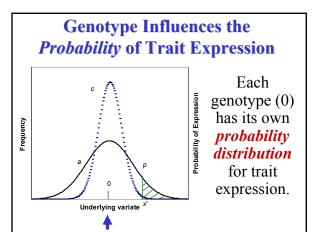
Distinct phenotypes are likely to evolve.

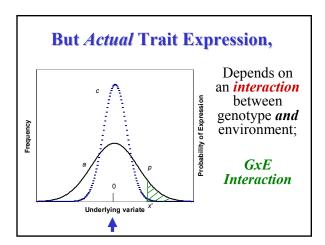
When environmental cues that predict success occur early in life,

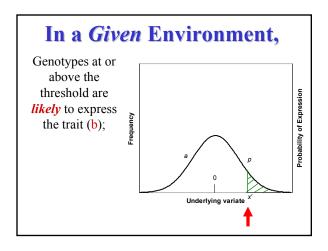
If Selection is Strong,



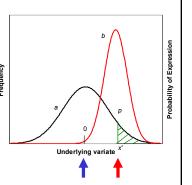
Distinct phenotypes are likely to evolve.

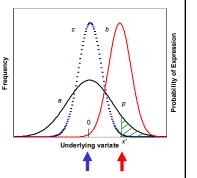

When environmental cues that predict success occur early in life,


Expression is likely to be mediated by a developmental threshold.


Genotype Influences the *Probability* of Trait Expression

Each genotype (0) has its own *probability distribution* for trait expression.

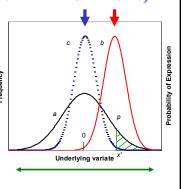



In a Given Environment,

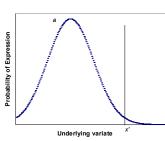
Genotypes at or above the threshold are likely to express the trait (b);
Genotypes below the threshold seldom do (c).

In a Given Environment,

Genotypes at or above the threshold are likely to express the trait (b).
Genotypes below the threshold seldom do (c).

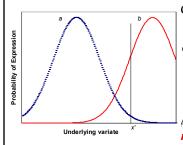


In a Given Environment,


As a result of the distribution of genotypes (a) and their associated sensitivities, i.e. their reaction norms (b, c)

The population appears *dimorphic*.

Relative morph frequencies depend on the location of *p*.


In a Variable Environment,

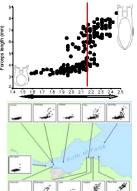
Genotype influences the probability of response to environmental cues.

Few genotypes express the trait at one environmental extreme (a);

In a Variable Environment,

Genotype influences the probability of response to environmental cues.

Few genotypes express the trait at one environmental extreme (a);


At the other extreme, nearly all genotypes become modified (b).

Relative Mating Success

For satellites and territorials, determines where the average male growth rate lies with respect to the body size threshold.

Average fitnesses are equal.

Inter-population variation is expected.

From Tomkins and Brown 2005		
, Marzadiele		
14 15 16 17 18 19 20 21 22 23 24 25		
pirth of porth		

Genetic Architectures

Sensitive to
environmental cues
can allow males to
express appropriate
phenotypes
in response to
changing
environments.

Provided That,

The cost of making the wrong choice is *high*.

Circumstances favoring plasticity occur *frequently*.

Are experienced by a *large fraction* of the population.

Phenotypic Plasticity is Unlikely When,

Selection is weak.

Circumstances favoring plasticity are *rare and highly contingent*.

Are experienced by *few* individuals in the population.

3. Behavioral Strategies

Discontinuous behavioral phenotypes expressed in response to changes in mating opportunities.

Are also known as "tactics."

Behavioral Example

Mate guarding tactics in stomatopods, Gonodactylus bredini.

Behavioral Strategies Arise When

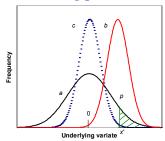
√ Sexual selection favors specialized mating phenotypes.

The relative mating success of each phenotype is *predictable* within male lifetimes.

The time scale for change is **short**.

Why?

Behavioral plasticity *excludes* major genes and developmental plasticity,


when reliable *cues* predicting mating success *are available*, and mating opportunities *change quickly*.

Genetic Architectures

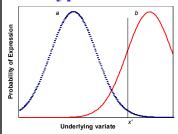
Underlying behavioral plasticity appear to be *similar* to those of developmental strategies.

Genetic variation underlying quantitative traits influences the likelihood that individuals express a particular mating behavior.

The Behavioral Threshold Hypothesis Predicts:

Differential
responsiveness to the
same environmental
cues among
individuals within
populations,

Due to *genetic differences* among males.


This May Explain Why,

Certain individuals in a population express one set of mating behaviors,

And under the same conditions, other individuals express another behavioral set.

The Behavioral Threshold Hypothesis *Also* Predicts:

Variable responses to different cue intensities among individuals within populations,

Due to *genetic* differences among males.

This May Explain Why,

Weak stimuli will induce *few individuals* to perform mate acquiring behaviors.

Strong stimuli, however will cause **most individuals** to attempt to mate.

•		
•		
•		
•		
,		
•		