The Invasion of Alternative Mating Strategies

Stephen M. Shuster

BIO 666: Animal Behavior
Fall 2009
Northern Arizona University

Mating Strategies (Alternative)

Polymorphisms in reproductive behavior, morphology or life history associated with competition for mates.

Genetic/Life History Example

Orange, blue and yellow males in the lizard, Uta stansburiana

Developmental Example

Developmental strategies in male Onthophagus beetles.

Behavioral Example

Extra-pair copulations (EPCs) in songbirds.

In Each of These Cases,

Novel phenotypes appear to have invaded, become modified and persist in natural populations.

Proximate Causes

Hormonal and neurological factors that regulate the timing and degree to which phenotypic differences appear.

Ultimate Causes

The genetic architectures underlying phenotypic expression.
These depend on the circumstances in which mating opportunities arise.

That is,

On the intensity of selection favoring distinct reproductive morphologies.

On the predictability of mating opportunities relative to individual life span.

Intensity of Sexual Selection

"If each male secures two or more females, many males would not be able to pair."
C. Darwin, 1871, p. 266.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Population Sex Ratio

The population sex ratio, \boldsymbol{R}, is the ratio of the total number of females to the total \qquad number of males, or,

$$
R=N_{\text {females }} / N_{\text {males }}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two Classes of Males

\qquad
Mating males $\left(\boldsymbol{p}_{\boldsymbol{m}}\right)=$
 males with one or more mates.
Non-mating males
$\left(\boldsymbol{p}_{0}\right)=$ males with no mates.
Since $\left(\boldsymbol{p}_{\boldsymbol{m}}+\boldsymbol{p}_{\boldsymbol{0}}\right)=1$, $\boldsymbol{p}_{\boldsymbol{m}}=\left(1-\boldsymbol{p}_{\boldsymbol{0}}\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Average Number of Mates

 per Male, mEquals the number of mates per male, \boldsymbol{i}, times the frequency of each male class, $\boldsymbol{p}_{\boldsymbol{i}}$, summed over all males.

Thus, $\boldsymbol{m}=\Sigma i p_{i}$

Other Relationships

\qquad
\qquad
If $\boldsymbol{m}=\Sigma i p_{i}$
and if $\boldsymbol{R}=\boldsymbol{m}$,
then
$\boldsymbol{R}=\Sigma i p_{i}$.

\qquad
\qquad
\qquad
\qquad
\qquad

The Average Harem Size, \boldsymbol{H}
Can be expressed as
 the total number of females, divided by the fraction of males who secure mates, thus,

$$
\begin{gathered}
\boldsymbol{H}=\sum i p_{i} /\left(1-p_{0}\right) \\
=\boldsymbol{R} /\left(1-p_{0}\right) \\
\boldsymbol{H}=\boldsymbol{R} /\left(p_{\mathrm{s}}\right)
\end{gathered}
$$

Sexual Selection is a Powerful Evolutionary Force Because:

For every male who sires young with with several females, there must be several males who \qquad fail to reproduce at all.

Strong Sexual Selection

 Creates a "Mating Niche"Unconventional males need only achieve mating success greater than the reciprocal of harem size to invade.

$$
\boldsymbol{s}>1 / \boldsymbol{H}
$$

Orchestia darwinii: α - and β-males \qquad

α-males: robust with an enlarged chela; they displace other α-males from breeding territories.

Orchestia darwinii: α - and β-males

\qquad

β-males: mature early, lack enlarged chelae, avoid fights, but are \qquad attracted to female aggregations. \qquad
\qquad

The Mating Success of β-males

β-males are successful in mating with some of the females in the harems of α-males.

Their success equals a fraction of that achieved by haremholding α-males.

\qquad
\qquad
\qquad
\qquad

The Fitness of β-males

\qquad

That fraction, \boldsymbol{S}, equals the success rate of β males invading harems.

Thus, the fitness of β males, \boldsymbol{W}_{β}, equals,

$$
W_{\beta}=\boldsymbol{s} H_{\alpha}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad class of males is difficult to identify.

Thus,

The apparent relationship between the mating success of α - and β-males is,

$$
\boldsymbol{H}_{\alpha}>\boldsymbol{s} \boldsymbol{H}_{\alpha}
$$

and therefore,

$$
\boldsymbol{W}_{\alpha}>\boldsymbol{W}_{\beta}
$$

Giving the appearance that β-males "make the best of a bad job."

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
This approach considers only the average
\qquad fitness of α-males that actually mate.

In Fact,

The average fitness of all α-males, $\boldsymbol{W}_{\alpha(\text { all })}$, is equal to R.
\boldsymbol{R} includes the average mate numbers of mating and non-mating α -
 males.

To Invade a Population,

-The average fitness of a mutant strategy must exceed the average fitness of the conventional strategy.
-That is, the average fitness of β-males must exceed the
 average fitness of α males.

We Can Express This Condition As,

\qquad

$$
\boldsymbol{W}_{\beta}>\boldsymbol{W}_{\alpha(\mathrm{all})}
$$

Or by substitution,

$$
s H_{\alpha}>R
$$

By Rearrangement This

\qquad Becomes,

$$
s>R / H_{\alpha}
$$

And if $\boldsymbol{R}=1$, $s>1 / H_{\alpha}$

Remember that,

$$
p_{0}=1-(1 / H)
$$

Or by rearrangement,

$$
\left(1-p_{0}\right)=1 / H
$$

So if,

$$
s>1 / H_{\alpha}
$$

Then by substitution,

$$
\boldsymbol{s}>\left(1-\boldsymbol{p}_{\boldsymbol{0}}\right)
$$

Differently Put,

The more females are clumped within the harems of a few α-males (i.e., more α-males are excluded from mating),
the easier invasion by β-males becomes.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A Worked Example

Let $\boldsymbol{H}=4$.
If $s>1 / H$
then s need only be >0.25 !

That is, satellite males need only mate 25% as successfully as the average polygynous male!

Strong Sexual Selection
 Favors Alternative Mating Strategies

\qquad
\qquad
\qquad
Unconventional males need only achieve mating success greater than the reciprocal of harem size to invade, and to PERSIST. Therefore...

A Classic Study

Hyla cinerea by Gerhardt et al. (1987) who recorded the mating success of calling, satellite, and non-calling males over 3 years.

Of the 57 males who mated, 50 were callers and 7 males were satellites, suggesting that the average success of callers was greater than for satellites.

Equal Fitnesses

\qquad
Gerhard et al. (1987) concluded \qquad that the fitnesses of the two male phenotypes were equal because \qquad nearly equal proportions of each population were successful in mating (11-12\%).

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Stated Differently,

If $\boldsymbol{p}_{0 \text { calling }}$ equals
$p_{0}=1-(1 / H)$ 0.89 , then the average harem size of calling males, $\boldsymbol{H}_{\text {calling }}$ equals 9.32 (not reported by Gerhardt et al.).

And If,

$s>1 / H$
Where \boldsymbol{s} represents the success satellites must obtain by stealing mates from calling males, then $\mathrm{s}>1-\boldsymbol{p}_{\text {ocalling }}$ or 0.11 , which is approximately equal to the fraction of the total matings satellite males obtain (7/57 $=0.12$).

"Making the Best of a

 Bad Job"Is a fallacy.
Individuals with fitness less than average, by definition, are selected against.
Persistence within a population is impossible without equality of fitnesses over time.

Equal Fitness Over Time

The condition that is necessary and sufficient for the persistence of distinct genotypes.

