Mate Choice and Sexual Selection

Stephen M. Shuster BIO 666: Animal Behavior Fall 2009 Northern Arizona University

The Presumed Importance of Female Mate Choice:

Mate choices influence female fitness through *direct selection* on females and through *indirect selection* on progeny

What is Direct Selection?

Selection on females that arises from variance in fitness *among females* due to differences in offspring numbers produced by different females.

What is Indirect Selection?

Selection on females that arises from variance in fitness *among offspring* due to mate choices made by different females.

Direct Selection on Choosy Females Is Presumed To:

Constrain sexual selection. Mitigate sexual conflict.

Allow assessment of male resource or phenotypic quality.

Indirect Selection on Choosy Females Is Presumed To:

Constrain sexual selection. Mitigate sexual conflict. Allow assessment of male genetic quality.

These Hypotheses Assume That:

Total selection on females is strong enough to counteract the effects of sexual selection on males.

Two Questions:

When *can* total selection on females constrain sexual selection on males?

When do the effects of male quality influence female fitness *most*?

What Do We Measure?

The variance in fitness; is proportional to the strength of selection.

The sex difference in the variance in fitness; its magnitude determines whether and to what degree the sexes will diverge.

What Tools Do We Use?

•The Opportunity for Selection.

•Analysis of Variance.

The Opportunity for Selection

Crow (1958, 1962)

$I = V_W / W^2$

Compares the fitness of breeding parents *relative* to the population before selection.

The variance in fitness, V_{W} , places *an upper limit* on the change in mean fitness from one generation to the next.

The Opportunity for Selection

Places an *upper limit* on phenotypic change because:

Heritability (h^2) is usually less than 1.

The correlation between phenotypic change and fitness variance, i.e., the relationship between ΔZ and V_w is usually less than 1.

Begin with:

The Mean and Variance in Offspring Numbers Among Females

> $O = \sum o_i / N_{females}$ where x_i the brood size of the *i*-th female

$V_{O} = \sum p_{k} (O - o_{i})^{2}$

Where p_k = the proportion of females with brood size k

Next:

The Mean and Variance in Offspring Numbers Among Males

Average Male Mating Success

 $= N_{females} / N_{males}$ = the Sex Ratio (R)

O = Average Offspring/Female

RO = Average Offspring/Male

The Dis	tributior	n of Femal	es with Male		
N Mates	Frequency	Mean # of Offspring	Variance in Offspring #		
0	p_{θ}	00	0 <i>V</i> ₀		
1	p_1	10	$1V_0$		
2	p_2	20	$2V_0$		
3	p_3	30	$3V_0$		
4	p_4	40	$4V_0$		
•	•	•	•		
k	p_k	kO	kV _o		
	_				
$N_{\downarrow\downarrow}$	1	N_{pp}	$N_{qq}V_{oq}$		

A Key Point

The mean and variance in offspring numbers for each mating class of males equals the products, jO and $jV_{Ofemales}$ respectively, where j= harem size ; O = average offspring/female, $V_{Ofemales}$ = variance in offspring/female

This Means That:

The mean and variance in offspring numbers among males will *far exceed* the mean and variance in offspring numbers among females. Males with no mates will produce no

offspring at all; thus unsuccessful males produce *fewer* offspring than the average female.

The Dis	tributior	n of Femal	es with Male
N Mates	Frequency	Mean # of Offspring	Variance in Offspring #
0	p_{θ}	00	0 <i>V</i> ₀
1	p_1	10	$1V_0$
2	p_2	20	$2V_o$
3	p_3	30	$3V_0$
4	p_4	40	$4V_{o}$
•	•	•	•
k	\boldsymbol{p}_k	kO	kV _o
	_		
$N_{\downarrow \downarrow}$	1	N_{pp}	$N_{\text{qq}}V_{o^{\text{qq}}}$

As in ANOVA,

 $V_{total} = V_{within} + V_{among}$

= The *average of the variances* in offspring numbers within the classes of mating males +

The *variance of the averages* in offspring numbers among the classes of mating males

 $V_{males} = \sum p_j (jV_{Ofemales}) + \sum p_j (jO-RO)^2$ $= RV_{Ofemales} + O^2 V_{mates}$

The *Total* Opportunity for Selection on Males and Females

(Wade 1979; Wade & Arnold 1980)

Recall that RO = average number of offspring/male; dividing V_{males} by $[RO]^2$ gives

 $V_{males} / [RO]^2 = [RV_{Ofemales} + O^2 V_{mates}] / [RO]^2$

which gives

$$I_{males} = (1/R)I_{females} + I_{mates}$$

I_{mates} Equals the Sex Difference in the Opportunity for Selection

$$I_{males} = 1/R (I_{females}) + I_{mates}$$

when R = 1,

$$I_{males} - I_{females} = I_{mates}$$

In general, the *sex difference* in the opportunity for selection is due to *differences in mate numbers* between the sexes.

Conventional and Reversed Sex Roles

For species with *conventional* sex roles

$$I_{c} = (1/R)I_{c} + I_{mates}$$

For species with *reversed* sex roles

$$I_{\text{Q}} = (R)I_{\text{C}} + I_{mates}$$

The Sex Difference in the Strength of Selection, ΔI

$$\Delta I = \{ I_{\text{c}} - I_{\text{c}} \} = I_{mates}$$

When $I_{\vec{c}} > I_{\phi}$, sexual selection modifies *males* When $I_{\phi} > I_{\vec{c}}$, sexual selection modifies *females* When $\Delta I = 0$, either there is *no* sexual selection Or sexual selection is *equally strong* in both sexes

How Much of Total Selection is Sexual Selection? $I_{\circ} = V_{o\circ} / (RO)^2 = 2.86$ $I_{\wp} = V_{o\circ} / O^2 = .14$ $I_{\circ} - I_{\wp} = (1/R-1) I_{\wp} + I_{mates}$ $I_{mates} = 2.77$ $I_{mates} / I_{\circ} = .97$ $I_{\circ} / I_{\wp} = 20.4$

This Means That:

Sexual selection in *P. sculpta* is *so strong* that direct selection on female fecundity is *very small* by comparison.

Conclusion I:

When can direct selection on females constrain sexual selection on males?

When sexual selection is *weak*.

Question Two:

When do the effects of *male quality* influence female fitness *most*?

The Sex Difference in the Opportunity for Selection

Recall that,

$$I_{males} - I_{females} = I_{mates}$$

To assess the effects of direct selection on females vs. sexual selection on males, we must measure

I females.

Recall That:

Direct selection on females affects the variance in offspring numbers among individuals.

Thus, $I_{females}$ can be understood by investigating selection on female life history.

Three Components of Female Life History:

The number of times a female mates: *Monandry vs. Polyandry* The number of reproductive episodes in a female's lifetime: *Semelparity vs. Iteroparity* The duration of female reproductive

competence: Uniseasonal vs. Multiseasonal Iteroparity

The Effect of Monandry on Imates

When a female mates *once* and produces only *one clutch* of offspring, she awards her *entire* reproductive output to a single male.

The Effect of Polyandry on Imates

When a female mates *more than once*, she *partitions* her clutch into several subclutches, equal in number to the number of sires.

The Overall Effects of Polyandry on I_{mates}

Males sire *fewer* progeny with each female; because each mating male sires only a fraction of the offspring of each mate he secures, the variance in mate numbers among males is *reduced*.

The Effect of Semelparity on Imates

When a female produces only *one clutch* of offspring, no variance exists *within females* in the number of offspring produced; all of the variance exists *among females*.

The Effect of Iteroparity on Imates

When a female produces *more than one clutch*, the variance in offspring numbers can be partitioned into *within-* and *among-female* components.

The Overall Effects of Iteroparity on I_{mates}

Multiple reproductive episodes by females *erode* I_{mates} because as clutch number increases, I_{mates} becomes a smaller fraction of the total variance in offspring numbers.

This Means That:

I_{mates} is eroded least in monandrous, semelparous species, and is eroded *most* in polyandrous, iteroparous species.

The Opportunity for Selection on Female Life History _{Wade (1987)}

 $I_{clutches} = V_{clutches} / X^2_{clutches}$

 $I_{clutches}$ is the opportunity for selection on females arising from multiple matings and from multiple reproductive events.

Both tendencies simultaneously *decrease* the variance in fitness among males and *increase* the variance in fitness among females.

The Total Opportunity for Selection

Wade (1987)

$I_{males} = 1/R (I_{females} - I_{clutches}) + I_{mates}$

*I*_{clutches} equals the opportunity for selection on females, owing to variance among females in the number of clutches produced.

 I_{mates} equals the sex difference in the opportunity for selection. When the sex ratio, R, is assumed to equal 1

Imales - Ifemales = Imates - Iclutches

How Can We Measure

I_{clutches} in a Natural Population?

Measuring the Variance in Offspring Numbers Among Females

Approach 1: Two Factor ANOVA

Identifies main effects of male and female parents as well as effects of parental interactions on offspring numbers.

Measuring the Variance in Offspring Numbers Among Females

Approach 2: Nested ANOVA

The effects of males and females are not considered fixed, but instead represent a *random* selection from the breeding population.

Clatches (n=3) $\overline{C_{111}}$ $\overline{C_{211}}$ $\overline{C_{221}}$ \overline	Females (a=3)									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Males (b=3)	Mii	M ₁₂	M ₁₃	M ₂₁	M22	M ₂₃	Mai	M ₃₂	M33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clutches (n=3)									C331
Site means $C_8 = C_{811} = C_{812} = C_{823} = C_{821} = C_{822} = C_{823} = C_{823}$										C333 C333
Site means $C_8 = C_{811} = C_{812} = C_{823} = C_{821} = C_{822} = C_{823} = C_{823}$	Sire sums D C _{inv}								$\overline{\mathbf{c}_{v}}$	$\overline{\mathbf{c}_{n}}$
Grand mean $(C_{AB}) = (1/nab) \Sigma \Sigma^* \Sigma^* C_{Bk}$ SS_{amag} (among groups) = $nb \Sigma^* (C_n - C_{Ab})^2$ SS_{amag} (virtes within dams) = $n \Sigma \Sigma^* (C_B - C_A)^2$ SS_{amag} (virthin dams) = $n \Sigma \Sigma^* (C_B - C_A)^2$ SS_{amag} (virthin dams) = $n \Sigma \Sigma \Sigma^* (C_{Bb} - C_A)^2$ Survees of Variance in Offspring Numbers: Fwithin = variance in ducts size within females (SS _{walas} divided by $ab(a - 1) = MS_{Ab}$)										
$\begin{split} & \text{SS}_{same g} \left(\text{and}_{g} \text{ groups} \right) = ab \widetilde{\Sigma}^* \left(C_A - C_A \right)^2 \\ & \text{SS}_{same} \left(\text{sires within dams} \right) = a \widetilde{\Sigma}^* \left(C_B - C_A \right)^2 \\ & \text{SS}_{same h} \left(\text{within dams} \right) = \widetilde{\Sigma}^* \widetilde{\Sigma}^* \left(C_B - C_A \right)^2 \\ & \text{Surces of V arrance in Offspring Numbers:} \\ & \text{Swithin = variance in clutch size within females (SSs_{same h} divided by ab(a - 1) = MS_1) \end{split}$	Dam means C _A									
		groups	$= nb \Sigma^{n}$		C_{Λ}^{2}					
	SS _{uithin} (within Sources of Varia Vwithin = varia Vsires = varian	dams) = ance in unce in c	Offspr lutch siz	ing Nu e within	mbers: females					
	SS _{within} (within Sources of Varia Vwithin = varia Vsires = varian MS ₂)	dams) = ance in ince in c ice in clu	Offspr lutch siz	ing Nu e within due to in	mbers: females dividual	mating	males (S	S _{stres} div	ided by a	
Vamong = variance in clutch size among females (SS _{among} divided by (a -1) = MS ₃)	SS _{within} (within Sources of Varia Vwithin = varia Vsires = varian MS ₂) Vamong = varia	dams) = ance in unce in c ce in clu ance in c	Offspr lutch siz itch size	ing Nu e within due to in ce among	mbers: females dividual ; females	mating (SS _{aming}	males (S	S _{sires} div	ided by a	
	SS _{within} (within Sources of Varia Vwithin = varia Vsires = varian MS ₂) Vamong = varia	dams) = ance in unce in c ce in clu ance in c	Offspr lutch siz itch size	ing Nu e within due to in ce among	mbers: females dividual ; females	mating (SS _{aming}	males (S	S _{sires} div	ided by a	

The Variance Components of V_{females}

 $V_{females} = V_{clutch number} + V_{sires within females} + V_{clutch size}$

*V*_{clutch number} = the variance in offspring numbers arising from females' production of multiple clutches of offspring.

 $V_{sires within females}$ = the variance in offspring numbers arising from the effects of multiple sires.

 $V_{clutch size}$ = the variance in average number of offspring per clutch, calculated across all females, i.e., the *among-female* component of variance in offspring numbers.

The Variance Components of V_{females}

 $V_{clutch number} + V_{sires within females} =$ the variance in offspring numbers, averaged across all females, that is, the *within-female* component of variance in offspring numbers.

If $V_{clutches} = V_{clutch number} + V_{sires within females}$,

then because , $V_{females} = V_{clutch number} + V_{sires within females} + V_{clutch size}$

 $V_{females} = V_{clutches} + V_{clutch size}$, or

 $V_{clutch \ size} = V_{females} - V_{clutches}$

The Relationship of $V_{females}$ to $I_{clutches}$

 $V_{clutch \ size} = V_{females} - V_{clutches}$

Then if each of these terms is divided by the square of the grand mean in offspring per female,

 $I_{clutch \ size} = I_{females} - I_{clutches}$

Recall that the total opportunity for selection is,

$$I_{males} = 1/R (I_{females} - I_{clutches}) + I_{mates}$$

This Means That:

Nested ANOVA provides a method for measuring the effects of multiple sires and multiple breeding episodes on *I_{females}* that is consistent with Wade (1987).

When Female Mate Choice Occurs:

Few males produce each generation; *I_{mates}* becomes *extremely large* compared to the opportunity for selection on females, *I_{females}*. When this happens, *I_{clutches}* and *I_{sires within females}* become *extremely small*.

Conclusion II:

When do the effects of male quality influence female fitness *most*?

When sexual selection is *negligible*.

Sexual Selection in Humans

Sex-differences in *genetic drift* creates different patterns of genetic diversity for genes inherited through each sex.

Prediction: Genetic diversity will *decrease* with *increasing* selection intensity.

Test: Y chromosome and mitochondrial sequence divergence in *Homo sapiens*

An Example of Low Y-Chromosome Diversity

Nearly 8% of the men living in the region formerly controlled by the Mongol Empire

Share the same 1,000 year old Ychromosome haplotype originating in Mongolia.

This is approximately 1.0% of the world's human population.

Facial Symmetry Indicates 'Genetic Quality?'

But recall that selection on 'quality' is strongest when $I_{mates} = 0.$

Adaptive benefits in this context may be *unlikely* to the extent to which human populations have experienced sexual selection.

A possible explanation is that human facial perception is symmetry" which provides

Major **Histocompatibility Complex (MHC) Loci**

Sequence variability appears to be involved in olfactory mate attraction in fish. mice. humans: choices favor *heterozygosity*.

Interpretation: particular combinations may be 'uniquely compatible'.

However, such *balancing selection* is unlikely to generate directional change.

In General:

Male quality will be *least important* to females when Imates is extremely large compared to Iclutches; at such times, female preferences are likely to be *arbitrary*.

Male quality will be most important when Imates and *I*_{clutches} are approximately equal in magnitude; such mating systems may be unstable.