Mate Choice and Sexual Selection

Stephen M. Shuster

BIO 666: Animal Behavior
Fall 2009
Northern Arizona University

The Presumed Importance of Female Mate Choice:

Mate choices influence female fitness through direct selection on females and through indirect selection on progeny

What is Direct Selection?

Selection on females that arises from variance in fitness among females due to differences in offspring numbers produced by
 different females.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Selection on females that arises from variance in fitness among offspring due to mate choices made by different females.

Direct Selection on Choosy Females Is Presumed To:

Constrain sexual selection.

Mitigate sexual conflict.

Allow assessment of male resource or phenotypic quality.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Indirect Selection on Choosy \qquad Females Is Presumed To:

Constrain sexual
\qquad selection.
Mitigate sexual conflict.
Allow assessment of male genetic quality. \qquad
\qquad

These Hypotheses Assume That:

Total selection on females is strong enough to counteract the effects of sexual selection on males.

Two Questions:

When can total selection on females constrain sexual selection on males?

When do the effects of male \qquad quality influence female fitness most? \qquad
\qquad

What Do We Measure?

The variance in fitness; is proportional to the strength of selection.
The sex difference in the variance
in fitness; its magnitude determines whether and to what degree the sexes will diverge.

What Tools Do We Use?

-The Opportunity for Selection.

- Analysis of Variance.

The Opportunity for Selection

Crow $(1958,1962)$

$$
I=V_{W} / W^{2}
$$

Compares the fitness of breeding parents relative to the population before selection.

The variance in fitness, V_{W}, places an upper limit on the change in mean fitness from one generation to the next.
\qquad

The Opportunity for Selection

Places an upper limit on phenotypic change because:

Heritability $\left(h^{2}\right)$ is usually less than 1 .
The correlation between phenotypic change and fitness variance, i.e., the relationship between $\Delta \boldsymbol{Z}$ and \boldsymbol{V}_{w} is usually less than 1.

$$
I=V_{W} / W^{2}
$$

In a Natural Population?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Begin with:

The Mean and Variance in Offspring Numbers Among Females \qquad

$$
O=\Sigma o_{i} / N_{\text {females }}
$$

where x_{i} the brood size of the i-th female

$$
V_{O}=\Sigma p_{k}\left(O-o_{i}\right)^{2}
$$

\qquad
Where $p_{k}=$ the proportion of females with brood size k \qquad
\qquad

Next:

The Mean and Variance in Offspring Numbers Among Males \qquad
Average Male Mating Success \qquad
$=\boldsymbol{N}_{\text {females }} / \boldsymbol{N}_{\text {males }}$
$=$ the Sex Ratio (\boldsymbol{R})
$\boldsymbol{O}=$ Average Offspring/Female \qquad
$\boldsymbol{R} \boldsymbol{O}=$ Average Offspring/Male

Like an ANOVA: The Distribution of Females with Males			
N Mates	Frequency	Mean \# of Offspring	Variance in Offspring \#
0	p_{0}	0 O	$0 V_{o}$
1	p_{1}	10	$1 V_{0}$
2	p_{2}	20	$2 V_{o}$
3	p_{3}	30	$3 V_{0}$
4	p_{4}	40	$4 V_{0}$
k	${ }^{\text {p }}$ k	k \boldsymbol{O}	${ }^{*} V_{O}$
$\boldsymbol{N}_{\text {¢ }}{ }_{\text {P }}$	1	$\boldsymbol{N}_{\text {¢¢ }}$ O \boldsymbol{O}	$\boldsymbol{N}_{\text {¢ }+¢} \boldsymbol{V}_{\boldsymbol{O}+\text { ¢ }}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A Key Point

The mean and variance in offspring numbers for each \qquad mating class of males equals the products, $\boldsymbol{j} \boldsymbol{O}$ and $\boldsymbol{j} \boldsymbol{V}_{\text {Ofemales }}$
respectively,
where
$\boldsymbol{j}=$ harem size ; $\boldsymbol{O}=$ average offspring/female,
$V_{\text {ofemales }}=$ variance in offspring/female

This Means That:

\qquad
The mean and variance in offspring \qquad numbers among males will far exceed the mean and variance in offspring \qquad numbers among females.
Males with no mates will produce no offspring at all; thus unsuccessful \qquad males produce fewer offspring than the average female. \qquad
\qquad

Like an ANOVA:
 The Distribution of Females with Males

N Mates	Frequency	Mean \# of Offspring	Variance in Offspring \#
0	p_{0}	00	$0 V_{o}$
1	p_{1}	10	$1 V_{0}$
2	p_{2}	20	$2 V_{0}$
3	p_{3}	30	$3 V_{o}$
4	p_{4}	40	$4 V_{0}$
-	-	-	\cdot
k	p_{k}	$k O$	$k V_{o}$
$\boldsymbol{N}_{\text {¢f }}$	$\overline{1}$	$\boldsymbol{N}_{\substack{+¢}} \boldsymbol{O}$	$\boldsymbol{N}_{\text {¢¢ }} \boldsymbol{V}_{\boldsymbol{O}+\text { ¢ }}$

$$
\begin{gathered}
\text { As in ANOVA, } \\
V_{\text {total }}=V_{\text {within }}+V_{\text {among }}
\end{gathered}
$$

$=$ The average of the variances in offspring numbers within the classes of mating males $+$
The variance of the averages in offspring numbers among the classes of mating males

$$
V_{\text {males }}=\Sigma p_{j}\left(j V_{\text {ofemales }}\right)+\Sigma p_{j}(j O-R O)^{2}
$$

$$
=R V_{\text {ofemales }}+O^{2} V_{\text {mates }}
$$

The Total Opportunity for Selection on Males and Females

(Wade 1979; Wade \& Arnold 1980)
Recall that $\boldsymbol{R O}=$ average number of
offspring/male;
dividing $\boldsymbol{V}_{\text {males }}$ by $[\boldsymbol{R O}]^{2}$ gives
$V_{\text {males }} /[R O]^{2}=\left[R V_{\text {Ofemales }}+O^{2} V_{\text {mates }}\right] /[R O]^{2}$
which gives
$I_{\text {males }}=(1 / R) I_{\text {females }}+I_{\text {mates }}$
$I_{\text {mates }}$ Equals the Sex Difference in the Opportunity for Selection

$$
I_{\text {males }}=1 / R\left(I_{\text {females }}\right)+I_{\text {mates }}
$$

when $R=1$,

$$
I_{\text {males }}-\boldsymbol{I}_{\text {females }}=\boldsymbol{I}_{\text {mates }}
$$

In general, the sex difference in the opportunity for selection is due to differences in mate numbers between the sexes.

Conventional and Reversed Sex Roles

For species with conventional sex roles

$$
\boldsymbol{I}_{\delta^{\lambda}}=(\mathbf{1} / R) I_{+}+\boldsymbol{I}_{\text {mates }}
$$

For species with reversed sex roles

$$
\boldsymbol{I}_{+}=(\boldsymbol{R}) \boldsymbol{I}_{\widehat{\delta}}+\boldsymbol{I}_{\text {mates }}
$$

The Sex Difference in the

 Strength of Selection, $\Delta I$$$
\Delta I=\left\{\boldsymbol{I}_{\hat{\delta}}-\boldsymbol{I}_{\uparrow}\right\}=\boldsymbol{I}_{\text {mates }}
$$

When $\boldsymbol{I}_{\widehat{\delta}}>\boldsymbol{I}_{\text {¢ }}$, sexual selection modifies males \qquad
When $\boldsymbol{I}_{\text {}}>\boldsymbol{I}_{\text {on }}$, sexual selection modifies females \qquad
When $\boldsymbol{\Delta I}=0$, either there is $\boldsymbol{n o}$ sexual selection
Or sexual selection is equally strong \qquad in both sexes

Paracerceis sculpta: A Worked Example \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculating the Variance in Offspring Numbers for Females ($\mathbf{N}=\mathbf{8 2 5}$)

$$
\begin{aligned}
& \boldsymbol{O}_{+}=62.1 \\
& \boldsymbol{V}_{\boldsymbol{O}}=521.7 \\
& \boldsymbol{I}_{+}=\boldsymbol{V}_{\boldsymbol{O}+} / \boldsymbol{O}_{+}{ }^{2} \\
& =.14
\end{aligned}
$$

Some Rules for Assigning Male Mating Success

Calculating the Variance in Offspring Numbers for Each Morph
\qquad
\qquad
\qquad
\qquad
\qquad
Harem Size

Calculating the Variance in Offspring Numbers for All Males ($\mathrm{N}=555$)

$$
\begin{aligned}
& V_{\text {Ổtotal }}=V_{\text {Oठ̂within }}+V_{\text {Oठ̂among }} \\
& =24,488.0+20.6 \\
& \left(R O_{Q}\right)^{2}=(92.6)^{2}=8,567.1 \\
& I_{\text {ditotal }}=\mathbf{2 . 8 6} \\
& I_{\text {oramong }}=.002
\end{aligned}
$$

\qquad
\qquad

How Much of Total Selection is Sexual Selection?

$$
\begin{aligned}
& I_{+}=V_{o+} / O^{2}=.14 \\
& \boldsymbol{I}_{\widehat{\delta}}-\boldsymbol{I}_{\odot}=(\mathbf{1} / \boldsymbol{R}-\mathbf{1}) \boldsymbol{I}_{\nmid}+\boldsymbol{I}_{\text {mates }} \\
& I_{\text {mates }}=2.77 \\
& I_{\text {mates }} / I_{\text {त }}=.97 \\
& \boldsymbol{I}_{\hat{\delta}} / \boldsymbol{I}_{\bigcirc}=\mathbf{2 0 . 4}
\end{aligned}
$$

This Means That:

Sexual selection in P. sculpta is so strong that direct selection on female fecundity is very small by comparison.

Conclusion I:

When can direct selection on females constrain sexual selection on males?

When sexual
selection is weak.

[^0].

\qquad

Question Two:

When do the effects of male quality influence female fitness most?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Sex Difference in the

 Opportunity for Selection \qquadRecall that, \qquad
$\boldsymbol{I}_{\text {males }}-\boldsymbol{I}_{\text {females }}=\boldsymbol{I}_{\text {mates }}$ \qquad
To assess the effects of direct selection on females vs. sexual selection on males, we must measure
\qquad
\qquad
$I_{\text {females }}$.

Recall That:

Direct selection on females affects the variance in offspring numbers among individuals. Thus, $\boldsymbol{I}_{\text {females }}$ can be understood by investigating selection on female life history.

Three Components of Female Life History:

The number of times a female mates:
Monandry vs. Polyandry
The number of reproductive episodes in a female's lifetime:
Semelparity vs. Iteroparity
The duration of female reproductive competence:
Uniseasonal vs. Multiseasonal Iteroparity

The Effect of Monandry on $I_{\text {mates }}$

When a female mates once and produces only one clutch of offspring, she awards her entire reproductive output to a single male.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Effect of Polyandry on $\boldsymbol{I}_{\text {mates }}$

When a female mates more than once, she partitions her clutch into several subclutches, equal in number to the number of sires.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Overall Effects of
 Polyandry on $I_{\text {mates }}$

Males sire fewer progeny with each female; because each mating male sires only a fraction of the offspring of each mate he secures, the variance \qquad in mate numbers among males is reduced.

The Effect of Semelparity on $\boldsymbol{I}_{\text {mates }}$
When a female produces only one clutch of offspring, no variance exists within females in the number of offspring produced; all of the variance exists among

females.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Effect of Iteroparity on $I_{\text {mates }}$

When a female produces more than one clutch, the variance in offspring numbers can be partitioned into within- and among-female components.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Overall Effects of Iteroparity on $I_{\text {mates }}$

Multiple reproductive episodes by females erode $I_{\text {mates }}$ because as clutch number increases, $I_{\text {mates }}$ becomes a smaller fraction of the total variance \qquad in offspring numbers.

This Means That:

$I_{\text {mates }}$ is eroded least in monandrous, semelparous species, and is eroded most in polyandrous, iteroparous species.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Opportunity for Selection on Female Life History
 Wade (1987)
 $I_{\text {clutches }}=V_{\text {clutches }} / X_{\text {clutches }}$

\qquad
$\boldsymbol{I}_{\text {clutches }}$ is the opportunity for selection on females arising from multiple matings and from multiple reproductive events.

Both tendencies simultaneously decrease the variance in fitness among males and increase the \qquad variance in fitness among females.

The Total Opportunity for Selection

\qquad

$$
I_{\text {males }}=1 / R\left(I_{\text {females }}-I_{\text {clutches }}\right)+I_{\text {mates }}
$$

\qquad
$\boldsymbol{I}_{\text {clutches }}$ equals the opportunity for selection on females, \qquad owing to variance among females in the number of clutches produced.
$\boldsymbol{I}_{\text {mates }}$ equals the sex difference in the opportunity for selection.
When the sex ratio, R, is assumed to equal 1

$$
I_{\text {males }}-I_{\text {females }}=I_{\text {mates }}-I_{\text {clutches }}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Measuring the Variance in

 Offspring Numbers Among Females
Approach 1: Two Factor ANOVA

Identifies main effects of male and female parents as well as effects of parental interactions on offspring numbers.

Measuring the Variance in Offspring Numbers Among Females

Approach 2: Nested ANOVA

The effects of males and females are not considered fixed, but instead represent a random selection from \qquad the breeding population.

The Variance Components of $V_{\text {females }}$
$V_{\text {females }}=V_{\text {clutch number }}+V_{\text {sires within females }}+V_{\text {clutch size }}$
$V_{\text {clutch number }}=$ the variance in offspring numbers arising from females' production of multiple clutches of offspring.
$V_{\text {sires within females }}=$ the variance in offspring numbers arising from the effects of multiple sires.
$V_{\text {clutch size }}=$ the variance in average number of offspring per clutch, calculated across all females, i.e., the amongfemale component of variance in offspring numbers.

The Variance Components of $V_{\text {females }}$

$V_{\text {clutch number }}+V_{\text {sires within females }}=$ the variance in offspring numbers, averaged across all females, that is, the withinfemale component of variance in offspring numbers.

If $V_{\text {clutches }}=V_{\text {clutch number }}+V_{\text {sires within females, }}$,

> then because,
$V_{\text {females }}=V_{\text {clutch number }}+V_{\text {sires within females }}+V_{\text {clutch size }}$

$$
V_{\text {females }}=V_{\text {clutches }}+V_{\text {clutch size }}, \text { or }
$$

$$
V_{c l u t c h ~ s i z e}=V_{\text {females }}-V_{\text {clutches }}
$$

\qquad

The Relationship of $V_{\text {females }}$ to $I_{\text {clutches }}$

$$
V_{\text {clutch size }}=V_{\text {females }}-V_{\text {clutches }}
$$

\qquad
\qquad the grand mean in offspring per female,

$$
I_{\text {clutch size }}=I_{\text {females }}-I_{\text {clutches }}
$$

Recall that the total opportunity for selection is,

$$
I_{\text {males }}=1 / R\left(I_{\text {females }}-I_{\text {clutches }}\right)+I_{\text {mates }}
$$

This Means That:

Nested ANOVA provides a method for measuring the effects of multiple sires and
multiple breeding episodes on $\boldsymbol{I}_{\text {females }}$ that is consistent with Wade (1987).

However, Recall That:

$$
I_{\text {males }}=
$$

$$
1 / R\left[I_{\text {females }}-\left(I_{\text {clutch number }}+I_{\text {sires witin females }}\right)\right]
$$

$$
+I_{\text {mates }}
$$

If the effects of male "quality" lie within $\boldsymbol{I}_{\text {sires }}$ within females, which lies within $I_{\text {clutches }}$, then in most species,
$I_{\text {sires within females }}<I_{\text {clutches }}<I_{\text {females }}<I_{\text {mates }}$ Indirect Selection Direct Selection $\begin{gathered}\text { Total selection } \\ \text { on females }\end{gathered}$

Indirect Selection Occurs Across
 Generations

The intensity of indirect selection diminishes by $1 / 2$ with each generation.

Indirect selection intensity on sex limited traits is further diminished.

Indirect selection on conditional traits is diminished further still.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

When Female Mate Choice

\qquad Occurs: \qquad
\qquad becomes extremely large
compared to the opportunity for selection on females, $\boldsymbol{I}_{\text {females }}$.
When this happens, $\boldsymbol{I}_{\text {clutches }}$ and \qquad
$I_{\text {sires within females }}$ become extremely small. \qquad
\qquad

Conclusion II:

\qquad

When do the effects of
\qquad male quality influence female fitness most?

When sexual selection
is negligible.
\qquad
\qquad
\qquad
\qquad
\qquad

Sexual Selection in Humans

\qquad
Sex-differences in genetic drift creates different patterns of genetic diversity for genes inherited through each sex.

Prediction: Genetic diversity will decrease with increasing selection intensity.
Test: Y chromosome and mitochondrial sequence divergence in Homo sapiens

An Example of Low Y-Chromosome Diversity
Nearly 8% of the men living in the region formerly controlled by the Mongol Empire
Share the same 1,000 year old Y chromosome haplotype originating in Mongolia.

This is approximately 1.0% of the world's human population.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Facial Symmetry

Indicates 'Genetic Quality?'
But recall that selection on 'quality' is strongest when

$$
\boldsymbol{I}_{\text {mates }}=0 .
$$

Adaptive benefits in this context may be unlikely to the extent to which human populations have experienced sexual selection.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

In General:

Male quality will be least important to females when
$\boldsymbol{I}_{\text {mates }}$ is extremely large compared to $\boldsymbol{I}_{\text {clutches }}$; at such times, female preferences are likely to be arbitrary.

Male quality will be most important when $\boldsymbol{I}_{\text {mates }}$ and $\boldsymbol{I}_{\text {clutches }}$ are approximately equal in magnitude; such mating systems may be unstable.

[^0]: .

