Sexual Selection and Mating Systems

Stephen M. Shuster BIO 666: Animal Behavior

Fall 2009
Northern Arizona University

Outline

\qquad
1.Darwin's contributions
2.Existing emphases in plant and animal mating systems
3.Quantitative approaches
4.Combining and improving \qquad methodologies
5. Conclusions

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Darwin's Observations On Sexual Differences

-Focused mainly on the contexts in which sexual selection occurred
-Male-male combat
-Female mate preferences
-An emphasis that persists to this day.

Sexual Selection

"...depends, not on a struggle for existence, but on a struggle between males for possession of the females; the result is not death of the unsuccessful competitor, but few or no offspring.
Sexual selection is, therefore, less rigorous than natural selection" (1859, p. 88).

Is There A Conflict?

- How can sexual selection appear to be one of the most powerful evolutionary forces known,
- Yet Darwin himself considered sexual selection less rigorous than natural selection?

The Cause of Sexual Selection

"If each male secures two or more females, many males would not be able to pair" (Darwin 1871, p. 266).

Visualizing the Process
 Wade 1979; Shuster and Wade 2003

When each male mates once, all males are equally successful.

Sexual Selection Creates Two Classes of Males , Classes of Males

If \boldsymbol{p}_{S} equals the fraction of males in the population who mate, and $\boldsymbol{p}_{\boldsymbol{0}}\left(=1-\boldsymbol{p}_{\boldsymbol{S}}\right)$ equals the fraction of males that do not mate,

$$
\boldsymbol{H}=\boldsymbol{N}_{\text {females }} /\left(1-\boldsymbol{p}_{\boldsymbol{0}}\right)
$$

When some males mate more than once, other males are excluded from mating at all.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Graphically, $p_{0}=1-(1 / H)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sexual Selection is a Powerful Evolutionary Force Because:

\qquad

For every male who sires young with with k females, there must be $k-1$ males who \qquad fail to reproduce at all. \qquad
\qquad

Darwin on Animal Mating Systems \qquad
Sexual Selection is NOT Ubiquitous in Animals
"In many cases, special circumstances tend to make the struggle between males particularly severe." (Darwin 1871, p. 208).

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Darwin's Grasp of Animal Mating Systems

The "special circumstances" in which reproduction occurs within individual species.

It is here that sexual differences arise - or do not.

Darwin on Plant Mating Systems

\qquad

Selfing is NOT Ubiquitous in Plants
\qquad
"Various hermaphrodite plants have become
\qquad heterostyled, and now exist under two or three forms; and we may confidently believe that this has been effected in order that crossfertilisation should be assured." \qquad
(Darwin 1877, p. 266).

Darwin's Grasp of Plant Mating Systems

Certain physical structures of flowers prevent or allow selfing.

It is here that floral differences arise - or do not.

Since Darwin

Two Descriptions of Mating Systems:

In terms of the genetic relationships that exist between mating male and female elements (Plants)
In terms of the numbers of mates per male or per female (Animals)

Plant Mating Systems

Darwin 1877; Wright 1922; Fisher 1941; Clegg 1980; Lande \& Schemske
1985; Holsinger 1991; Barrett and Harder 1996; Vogel and Kalisz 2002
A focus on deviations from random mating and their associated genetic consequences.
Differences in mating system identified in terms of $\boldsymbol{f l o r a l}$ morphology.

A Summary of Plant Mating Systems

Perfect
Flowers
(hermaphroditic)
\qquad
\qquad

Sexual Selection in Plants?

However, this kind of male-male competition through pollen does not necessarily result in greater variance in male than in female reproductive success."

Animal Mating Systems
 (Bateman 1948; Williams 1966; Trivers 1972; Emlen \& Oring 1977; Maynard Smith

 1977; Clutton-Brock \& Vincent 1991; Clutton-Brock \& Parker 1992; Reynolds 1996; Ahnesjö et al. 2001; Alcock 2005)-Parental Investment Theory: Gamete dimorphism initiates sexual selection.

-The few, large ova of females are a limited resource for which males must compete.
-The intensity of sexual selection on males depends on the degree to which females are rare.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Environmental

Potential for

Emlen \& Oring 1977
The degree to which the social and ecological environment allows males to monopolize females as mates.

However, EPP is difficult to define and quantify

Fig. 2. Graphic representation of the environ. mental potential for polygamy tindicated by
the perpendicular height of the shaded areal the perpendicular height of the shaded areal
and its recation to the spatial distribution of resources and temporal availability of resep. tive mates.
among species.

The Operational

Sex Ratio

Emlen \& Oring 1977
OSR $=N_{\text {mature males }} / N_{\text {receptive }}$ females
A reproductive competition coefficient.
$\boldsymbol{O S R}>1=$ females are rare, competition for mates is intense.
$\boldsymbol{O S R}<1=$ females are abundant, competition for mates is relaxed.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Evolutionary Interpretations
 Biases in OSR are presumed to have significant consequences

Variance in mating success: (Positive Mate guarding/mating duration
effect: Emlen 1976; Balshine-Earn 1996; (McLain 1981; Sillen-Tullberg 1981;

Kvarnemo et al. 1995; Jann et al. 2000;
Jones et al. 2001; Foellmer \& Fairbairn
2005; Negative effect: Shuster et al. 2001 ,
2005; Negative effect: Shuster
No effect: Cerchio et al. 2005;
Reversal of sex roles: (Emlen \& Oring
1977; Smith 1984; Berglund et al. 1989;
Forsgren et al. 2004; Andersson 2005;
Simmons \& Kvarnemo 2006)
Avoidance of sperm competition
(Positive: Møller 1989; Møller \& Briskie
1995; Hosken 1997; Bateman 1997; Pitnic \& Karr 1996; Negative: Pen \& Weissing 1999; Kemp \& Macedonia 2007)

Mate selection and choosiness:
Mate selection and choosiness:
(Rosenqvist 1993; Berglund 1994; Kokko
(Rosenqvist 1993; B
\& Monahagn 2001)
(McLain 1981; Sillen-Tullberg 1981;
Jormalainen 1998; Gao \& Kang 2005)
Family sex ratio adjustment
McLain \& Marsh 1990; Lopez \& Dominguez 2003; Warner \& Shine 2007
Aggressive behavior Grant et al. 2000; Grant \& Foam 2002;
Changes in oviposition rate Spence \& Smith 2005;
Female body temperature: (Alsop et al. 2006)
Population declines: (Stifetten \& Dale 2006)

Measuring OSR

(Clutton-Brock \& Vincent 1991; Clutton-Brock \& Parker 1992; Parker \& Simmons 1996; Ahnesjö et al. 2001; Forsgren et al. 2004)
Considers the effect of certain receptive individuals at a particular time and in a particular place, on the intensity of sexual selection.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

When Losers are Ignored

A significant fraction of the among-group component of fitness variance goes unrecognized.
This creates 2 kinds of errors:

1. The average fitness of the population is overestimated \qquad
\qquad
\qquad

And, the Stronger Sexual Selection Becomes,

The larger the possible error!

Because as fewer males mate, more of the male population is excluded from
mating altogether.

A Similar Problem Exists for Potential Reproductive Rates

Only a fraction of the actual population is considered in most measurements - Those with the largest potential values

Under most circumstances, few if any individuals may achieve this rate.

A Better Approach Measure Selection Directly

If traits under

 selection are known,Measure the standardized covariance between phenotype and fitness - slope of this line is β.

Phenotypic Correlations

What happens when particular individuals in a population mate with other particular individuals?

When particular traits become associated between the sexes, genetic correlations may arise between male and female mating phenotypes.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Genetic Correlations

Fisher 1930; Lande 1981; Kirkpatrick 1982; Bakker 1993 \qquad

Other Genetic Correlations

Shuster \& Wade 2003 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Selection On Specific Traits?

The Opportunity for Selection
 (Crow 1958, 1962; Wade 1979)

$$
I=V_{W} / W^{2}=V_{w}
$$

Compares the fitness of breeding parents relative to the population before selection.

The variance in relative fitness, \boldsymbol{V}_{w}, provides an empirical estimate for selection's strength.
$\boldsymbol{I}_{\hat{\delta}}=\boldsymbol{V}_{\boldsymbol{O}_{\delta}^{\delta}} /\left(\boldsymbol{O}_{\overparen{\delta}}\right)^{2} \quad \boldsymbol{I}_{+}=\boldsymbol{V}_{\boldsymbol{O}} /\left(\boldsymbol{O}_{Q}\right)^{2}$

The Sex Difference in the

 Strength of Selection, ΔIShuster \& Wade 2003

$$
\Delta I=\left\{\boldsymbol{I}_{\hat{\delta}}-\boldsymbol{I}_{\hat{+}}\right\}=\boldsymbol{I}_{\text {mates }}
$$

When $\boldsymbol{\Delta I}>0$, sexual selection modifies males
When $\Delta I<0$, sexual selection modifies females
When $\boldsymbol{\Delta I}=0$, either there is $\boldsymbol{n o} \boldsymbol{o}$ sexual selection
Or sexual selection is equally strong in both sexes

Parental Investment and Animal Mating Systems

(Bateman 1948; Williams 1966; Trivers 1972; Emlen \& Oring 1977; Maynard Smith 1977; Clutton-Brock \& Vincent 1991; Clutton-Brock \& Parker 1992; Reynolds 1996; Ahnesjö etal. 2001; Alcock 2005) \qquad
Males and females are defined by differences in energetic investment in gametes.
In most sexual species, females produce few, large ova, whereas males produce many,
tiny sperm.

However,

Sex differences in parental investment fail to explain the details of male parental care. In sticklebacks, male care enhances a male's ability to mate. \qquad In seahorses, male care reduces male mating opportunities.
How is this possible if parental investment is causal?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quantify Offspring Numbers in Males and Females?

Sexual Selection and the SpatioTemporal Distribution of Matings

Does OSR reliably estimate the intensity of competition?
Consider: Equal sex ratio (5 males: 5 females).
5 male territories, 5 females with variable receptivity

Patches w/males	Intervals w/ females->						N_{i}.	
		1	2	3	4	5		
	1	0	0	0	0	0		0
	2	0	0	0	0	0		0
	3	0	0	0	0	0		0
	4	0	0	0	0	0		0
	5	0	0	0	0	0		0
N_{4}		0	0	0	0	0	${ }^{\Sigma}$	0

N_{4}

Possible Measurements:

$$
\begin{aligned}
& \text { w/ males } \\
& \begin{array}{llll}
1 & 2 & 3 \\
1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
3 & 1 & 0 & 0 \\
4 & 1 & 0 & 0 \\
5 & 1 & 0 & 0
\end{array} \\
& \begin{array}{l}
\mathrm{N}_{1}(\mathrm{t} \\
\mathrm{K} \\
\mathrm{R}(\mathrm{t}) \\
\mathrm{Ro}(\mathrm{t})
\end{array} \\
& 1 / N_{\text {maner }} \text { (i) } \\
& \mathbf{N}_{\mathbf{i} .}=N_{\text {females }} \text { in each row } \\
& \mathrm{K}(\mathrm{t})=N_{\text {males }} \text { in all } \\
& \text { territories } \\
& \boldsymbol{R}=N_{\text {females }} / N_{\text {males }} \\
& \boldsymbol{R}_{\mathbf{O}}=N_{\text {males }} / N_{\text {females }}= \\
& \boldsymbol{R}(\mathrm{t})=\mathrm{N}_{\mathrm{i}} / \mathrm{K}(\mathrm{t})=\boldsymbol{R} \text { at each interval } \\
& \boldsymbol{R}_{\mathbf{O}}(\mathrm{t})=\mathrm{K}(\mathrm{t}) / \mathrm{N}_{\mathrm{i} \text {. }}=\boldsymbol{R}_{\mathbf{O}} \text { at each interval } \\
& \Sigma \boldsymbol{R}_{\mathbf{0}}(\mathrm{t})=\text { the sum of the individual instantaneous OSRs } \\
& \Sigma \boldsymbol{R}(\mathrm{t})=\text { the sum of the individual instantaneous Rs }
\end{aligned}
$$

	Interva			2	5		N
Patches w/ males							
	$\angle 1$	0	0	0	0		1
		1		0	0		1
	0	0	1		0		1
	0	0	0		0		1
	0	0	0		$1)$		1
						Σ	5
\mathbf{N}_{j}	1	1	1	1	1	5	
$K(t)$	5	5	5	5	5		
R(t)	0.20	0.20	0.20	0.20	0.20	1.00	
Ro(t)	5	5	5	5	5	25.00	
$1 / \mathrm{N}_{\text {females }}(\mathrm{t}$)	1	1	1	1	1		

A Solution: Partitioning Variance Components

$$
V_{\text {total }}=V_{\text {within }}+V_{\text {among }}
$$

\qquad
\qquad
$=$ The average of the variances within the classes (groups)
$\stackrel{+}{+}$ among the classes (groups)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What Does It Mean?

\qquad

$$
\left.\boldsymbol{I}_{\text {mates }}=\boldsymbol{I}_{\text {sex ratio }}+{ }^{*} \boldsymbol{I}_{\text {mates }(\mathrm{t})}-{ }^{*} \boldsymbol{I}_{\text {mates }(\mathbf{k})}\right)
$$

The total opportunity for sexual selection

The opportunity for sexual selection caused by temporal variation in the sex ratio (a better 'OSR')

The opportunity for sexual selection caused by temporal variation in the availability of females

minus

The opportunity for sexual selection caused by spatial variation in the availability of females

Quantify Mating Success?

The Mean Crowding of Females

in Space and Time

Lloyd 1967; Wade 1995; Shuster \& Wade 2003
The mean crowding of females on resources defended by males can be expressed as,

$$
m *=m+\left[\left(V_{m} / m\right)-1\right]
$$

In this context, \boldsymbol{m} * represents the number of other females the average female experiences on her resource patch.

$$
t^{*}=t+\left[\left(V_{t} / t\right)-1\right]
$$

Spatial Distribution of Mates

\qquad
$m^{*}=m+\left[\left(V_{m} / m\right)-1\right]$

Temporal Distribution of Mates

\qquad
$t^{*}=t+\left[\left(V_{t} / t\right)-1\right]$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\boldsymbol{m}^{*}, \boldsymbol{t}^{*}$ and $\boldsymbol{I}_{\text {mates }}(=\Delta I)$
The relationship between \boldsymbol{m} * and $\boldsymbol{I}_{\text {mates }}$ is proportional. At $\boldsymbol{m}^{*}{ }_{\text {max }}$ one or a few males could defend and mate with all of the females in the population. Conversely, the relationship of between \boldsymbol{t}^{*} and $\boldsymbol{I}_{\text {mates }}$ is reciprocal.
At $\boldsymbol{t}^{*}{ }_{\text {max }}$, the ability of one or a few males to mate with multiple females is reduced.

The $4 I$ Surface

Shuster \& Wade 2003

Dynamic Evolution of Mating Systems

When m * is low and t^{*} is high:

Males are likely to seek out, remain with, and provide parental care for isolated, - synchronously receptive females

Persistent Pairs

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

If Females Become	
More Spatially	\boldsymbol{m} is moderate to high, \boldsymbol{t}^{*} is high:
Aggregated:	Males are expected to defend individual females, but breeding will occur in large aggregations.
Mass Mating	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Ecology and Phenology of Plant
 Mating Systems

How are Plant and Animal Mating

Summary

Why not to use the same quantitative methods for studying plant and animal mating systems?
Population genetics rigor and emphasis on genetic parentage data from plants.

Spatio-temporal data and quantitative genetic approaches to selection from animals.

\qquad

