The Opportunity for Sexual Selection

\qquad

Stephen M. Shuster
BIO 666: Animal Behavior
Fall 2009
Northern Arizona University

The Current View of Sex Differences

Males and females are defined by differences in energetic investment in gametes.
In most sexual species, females produce few, large ova, whereas males produce many,

tiny sperm.

Parental Investment Theory

\qquad
(Bateman 1948; Williams 1966; Trivers 1972; Emlen \& Oring 1977; Maynard Smith
1977; Clutton-Brock \& Vincent 1991; Clutton-Brock \& Parker 1992; Reynolds 1996; Ahnesjö et al. 2001; Alcock 2005)
-Predicts that gamete dimorphism initiates sexual selection.

-The few, large ova of females are a limited resource for which males must compete.
-Males are will be more competitive in mate acquisition, less discriminating in mate choice, and less parental toward offspring than females.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

An Alternative View,

Sex differences are NOT due to differences in initial parental investment.
Instead, sex differences are due to sex differences in fitness variance.
i.e., in selection intensity

To Understand

Whether and to what extent the sexes may become distinct,

It is necessary to measure the mean and the variance in fitness for males and females.

		Measuring the Mean and Variance
Females	Males	in Offspring Numbers
P 1	1	
$\triangle=2$	2	$N_{\text {Ototal }}=5$
3	3	$\boldsymbol{N}_{¢}=5 ; \quad \boldsymbol{O}_{\square}=1 ;$
4	4	
5	5	

| | |
| :---: | :---: | :---: | :---: |
| Females | Measuring the |

		Measuring the ean and Variance
		in Offspring
1		Numbers
2	2	$N_{\text {Ototal }}=5$
3	3	$\begin{gathered} \boldsymbol{N}_{\odot}=5 ; \quad \boldsymbol{O}_{\odot}=1 ; \\ \boldsymbol{V}_{\boldsymbol{O}_{Q}}=0 . \end{gathered}$
	4	$\boldsymbol{N}_{\delta}=5 ; \quad \boldsymbol{O}_{\widehat{\delta}}=1 ;$
5	5	$V_{\text {O }}{ }^{\text {d }}=0$.

$\left.\begin{array}{|ccc|}\hline \text { Measuring the }\end{array}\right\}$

	9898	Males	The Mean and Variance in Offspring Numbers
1	88	1	
2	89	2	$\begin{aligned} & \boldsymbol{N}_{\text {Ototal }}=25 \\ & \boldsymbol{N}_{\text {早 }}=5 ; \end{aligned}$
3	0	3	
4		4	
5	80	5	

		Males	The Mean and Variance in Offspring Numbers
1	88	1	
	O	2	$\boldsymbol{N}_{\text {Ototal }}=25$
2			$\boldsymbol{N}_{\bigcirc}=5 ; \quad \boldsymbol{O}_{\bigcirc}=5 ;$
3		3	
4		4	
5	88	5	

\qquad

This Means That:

\qquad
The variance in offspring numbers in one sex can far exceed the variance in
\qquad offspring numbers in the other sex.

Males (or females) with no mates will produce no offspring at all.
Thus, unsuccessful males (or females) produce fewer offspring than the average female. \qquad
\qquad

What Do We Measure?

The variance in fitness; is proportional to the strength of selection.
The sex difference in the variance in fitness; its magnitude determines whether and to what degree the sexes will diverge.

What Tools Do We Use?

The Mean and Variance in Fitness

The Opportunity for Selection

Analysis of Variance

The Mean and Variance in Fitness

Consider a population in which,

$$
N_{\text {males }}=100
$$

$N_{\text {females }}=100$
Sex ratio $=\boldsymbol{R}=\boldsymbol{N}_{\text {females }} / \boldsymbol{N}_{\text {males }}=\mathbf{1}$

Females mate once, males can mate more than once.

The Average Mating Success of Mating Males, \boldsymbol{H}

$$
\boldsymbol{H}=\Sigma\left[k_{\mathrm{i}} m_{\mathrm{i}}\right]
$$

$$
/\left[\Sigma\left(m_{\mathrm{i}}\right)-m_{0}\right]
$$

Or,
[(0)(0) +
$(1)(100)+(2)(0)$
$+(3)(0)+(4)(0)$
$+(5)(0)+(6)(0)]$
$/[100-0]=1$. \qquad
\qquad

The Variance in Male Mating
Success, V_{M}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Case 2: Random Mating The Classes of Mating Males, $\boldsymbol{k}_{\mathrm{i}}$

There are still 7 classes of mating males, but the distribution of males among mating classes has changed.

The Average Mating Success of Mating Males, \boldsymbol{H}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Variance in Male Mating

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

With Random Mating,

By chance, some males are excluded from mating.
Thus, $\boldsymbol{R}=\boldsymbol{M}=\mathbf{1}$, but $\boldsymbol{H}>\boldsymbol{M}$.
And because the distribution is wider,

$$
V_{M}=1
$$

\qquad
\qquad

Case 3: Polygyny
 The Classes of Mating Males, $\boldsymbol{k}_{\mathrm{i}}$

Again, there are 7 classes of mating males, but the distribution of males in each class is even more extreme.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Number Males in Each Mating Class, $\boldsymbol{m}_{\mathbf{i}}$

Now, each of the mating classes contains males,
but, $\boldsymbol{m}_{0}=54$, $\boldsymbol{m}_{1}=22, \boldsymbol{m}_{2}=12$,
$\boldsymbol{m}_{3}=4, \boldsymbol{m}_{4}=2$,
$\boldsymbol{m}_{5}=2, \boldsymbol{m}_{6}=4$.
$\boldsymbol{N}_{\text {males }}=\boldsymbol{N}_{\text {females }}$ $=100$, so $\boldsymbol{R}=1$.

The Average Male Mating
Success, M

$$
\begin{aligned}
& \boldsymbol{M}=\Sigma\left[k_{\mathrm{i}} m_{\mathrm{i}}\right] \\
& / \Sigma m_{\mathrm{i}} \\
& \text { Or, } \\
& \text { [(0)(54) + } \\
& (1)(22)+(2)(12) \\
& +(3)(4)+(4)(2) \\
& +(5)(2)+(6)(4)] \\
& / 100=1 .
\end{aligned}
$$

The Average Mating Success of Mating Males, \boldsymbol{H}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Variance in Male Mating

With Polygyny,

Even more males are excluded from mating ($\boldsymbol{m}_{0}=54$). Again, $R=M=1$. But $\boldsymbol{H} \gg \boldsymbol{M}$, and because the distribution of male mating success is wider, $V_{M}=\mathbf{2 . 3 2}$.
In General

| In General |
| :---: | :---: | :---: |

| | In General
 As \boldsymbol{H} increases, so does the
 variance in mate numbers, V_{M} |
| :---: | :---: | :---: |
| As m_{0} increases, fewer males | |
| contribute to the next generation. | |

The Opportunity for Selection:

 What is it and What does it measure?$$
I=V_{W} / W^{2}=V_{w}
$$

Compares the fitness of breeding parents relative to the population before selection.

The variance in relative fitness, $\boldsymbol{V}_{\boldsymbol{w}}$, places an upper limit on the total phenotypic change per generation.

An Upper Bound Because,

\qquad

Heritability $\left(\boldsymbol{h}^{2}\right)$ is usually <1.

The correlation between the variance in relative fitness and phenotypic change, i.e.,
$\operatorname{Cov}\left(\boldsymbol{\Delta} \boldsymbol{Z}, \boldsymbol{V}_{w}\right)$ is usually <1.
By chance, bad things happen to good genes and vice versa.

How is $\boldsymbol{I}_{\widehat{\delta}}$ Measured?

\qquad

$$
\boldsymbol{W}_{\hat{\delta}}=\Sigma_{\hat{\delta}} \boldsymbol{O}_{\boldsymbol{i}} / \boldsymbol{N}_{\hat{\delta}}
$$

where $\boldsymbol{O}_{\boldsymbol{i}}$ the brood size of the i-th male, who may have his brood with >1 female.

$$
\begin{gathered}
\boldsymbol{V}_{\overparen{\lambda}}=\Sigma_{\overparen{\delta}}\left(\boldsymbol{W}_{\overparen{\delta}}-\boldsymbol{O}_{\boldsymbol{i}}\right)^{2} / \boldsymbol{N}_{\overparen{\delta}} \\
\boldsymbol{I}_{\overparen{\lambda}}=\boldsymbol{V}_{\lambda} /\left(\boldsymbol{W}_{\lambda}\right)^{\mathbf{2}}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How is I_{Q} Measured?

$$
\boldsymbol{W}_{¢}=\boldsymbol{\Sigma}_{¢} \boldsymbol{O}_{\boldsymbol{j}} / \boldsymbol{N}_{¢}
$$

where \boldsymbol{O}_{j} the brood size of the j-th female who
may have her brood with >1 male.

$$
\begin{gathered}
\boldsymbol{V}_{\uparrow}=\boldsymbol{\Sigma}_{\uparrow}\left(\boldsymbol{W}_{\uparrow}-\boldsymbol{O}_{\boldsymbol{j}}\right)^{\mathbf{2} / \boldsymbol{N}_{\uparrow}} \\
\boldsymbol{I}_{\uparrow}=\boldsymbol{V}_{\uparrow} /\left(\boldsymbol{W}_{\uparrow}\right)^{\mathbf{2}}
\end{gathered}
$$

How are $\boldsymbol{I}_{\widehat{\delta}}$ and $\boldsymbol{I}_{\nmid+}$ Related?

First: Every offspring has one mother and one father

$$
\begin{gathered}
\Sigma_{\overparen{\beta}} \boldsymbol{o}_{\boldsymbol{i}}=\Sigma_{\odot} \boldsymbol{o}_{\boldsymbol{j}} \\
\boldsymbol{W}_{\overparen{\overparen{ }}}=\boldsymbol{R} \boldsymbol{W}_{\uparrow}
\end{gathered}
$$

Where $R=N_{\mathrm{o}} / N_{\text {万 }}$

Like an ANOVA:

The Distribution of Females with Males

N Mates	Frequency	Mean \# of Offspring	Variance in Offspring \#
0	p_{0}	00	$0 V_{0}$
1	p_{1}	10	$1 V_{0}$
2	p_{2}	20	$2 V_{0}$
3	p_{3}	30	$3 V_{0}$
4	p_{4}	40	$4 V_{0}$
-	.	.	.
k	p_{k}	$k O$	$k V_{o}$
$\boldsymbol{N}_{\text {¢ }}$ ¢	$\overline{1}$	$\boldsymbol{N}_{\bigcirc \bigcirc O} \boldsymbol{O}$	$\boldsymbol{N}_{\bigcirc+9} \boldsymbol{V}_{\boldsymbol{O}}$ ¢

This Means That:

The variance in offspring numbers in one sex can far exceed the variance in offspring numbers in the other sex.

Males (or females) with no mates will produce no offspring at all.
Thus, unsuccessful males (or females) produce fewer offspring than the average female.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{gathered}
\text { As in ANOVA, } \\
V_{\text {total }}=V_{\text {within }}+V_{\text {among }}
\end{gathered}
$$

$=$ The average of the variances in offspring numbers within the classes of males who mate

$+$

The variance of the averages in offspring numbers among the classes of mating and nonmating males

$$
\begin{gathered}
\boldsymbol{V}_{\overparen{\delta}}=\Sigma \boldsymbol{p}_{\boldsymbol{j}}\left(\boldsymbol{j} \boldsymbol{V}_{\odot}\right)+\Sigma \boldsymbol{p}_{\boldsymbol{j}}\left(\boldsymbol{j} \boldsymbol{W}_{\odot}-\boldsymbol{R} \boldsymbol{W}_{\odot}\right)^{\mathbf{2}} \\
=\boldsymbol{R} \boldsymbol{V}_{\odot}+\boldsymbol{W}_{\odot}^{2} \boldsymbol{V}_{\text {mates }}
\end{gathered}
$$

How are $\boldsymbol{I}_{\overparen{\delta}}$ and \boldsymbol{I}_{q} Related?

Third: Apply these definitions,

Recall that $\boldsymbol{R} \boldsymbol{W}_{\text {¢ }}=$ average number of offspring/male.
Dividing $\boldsymbol{V}_{\widehat{\delta}}$ by $\left[\boldsymbol{R} \boldsymbol{W}_{\text {¢ }}\right]^{2}$ gives
$\boldsymbol{V}_{\text {of }} /\left[\boldsymbol{R} \boldsymbol{W}_{\text {¢ }}\right]^{2}=\left[\boldsymbol{R} \boldsymbol{V}_{\text {¢ }}+\boldsymbol{W}_{\text {¢ }}^{2} \boldsymbol{V}_{\text {mates }}\right] /\left[\boldsymbol{R} \boldsymbol{W}_{\text {}}\right]^{2}$
which gives
$\boldsymbol{I}_{\widehat{\delta}}=(\mathbf{1} / \boldsymbol{R}) \boldsymbol{I}_{+}+\boldsymbol{I}_{\text {mates }}$

Conventional and Reversed Sex Roles

For species with conventional sex roles

$$
\boldsymbol{I}_{\delta^{\lambda}}=(\mathbf{1} / R) I_{+}+\boldsymbol{I}_{\text {mates }}
$$

For species with reversed sex roles

$$
\boldsymbol{I}_{\nmid}=(\boldsymbol{R}) \boldsymbol{I}_{\widehat{\delta}}+\boldsymbol{I}_{\text {mates }}
$$

The Sex Difference in the

 Strength of Selection, $\Delta I$$$
\Delta I=\left\{\boldsymbol{I}_{\hat{\delta}}-\boldsymbol{I}_{\uparrow}\right\}=\boldsymbol{I}_{\text {mates }}
$$

When $\boldsymbol{I}_{\widehat{\delta}}>\boldsymbol{I}_{\text {¢ }}$, sexual selection modifies males \qquad
When $\boldsymbol{I}_{+}>\boldsymbol{I}_{\hat{\phi}}$, sexual selection modifies females \qquad
When $\boldsymbol{\Delta I}=0$, either there is $\boldsymbol{n o}$ sexual selection
Or sexual selection is equally strong \qquad in both sexes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Opportunity for Selection

Crow $(1952,1964)$

$$
I=V_{W} / W^{2}
$$

The fitness of breeding parents relative to the population before selection. \qquad

The variance in fitness, V_{W}, places an upper limit on \qquad the change in mean fitness from one generation to the next.

Phenotypic Distributions

Most

populations of characteristics can be described by a bell-shaped (i.e, normal) curve.

Phenotype

Phenotypic Distributions

\qquad

Phenotype

The Average

A measure of central tendency

Calculated as:

$$
\begin{aligned}
X & =\sum x_{i} / \boldsymbol{N} \\
& =\sum p_{i} x_{i}
\end{aligned}
$$

Phenotype

The mean phenotype in the population before selection, Z, is

$$
Z=\int z p(z) d z
$$

$z=$ individuals with phenotypic value, z
$\boldsymbol{p}(\boldsymbol{z})=$ the frequency of such individuals in the population

The Variance

A measure of the width of the distribution.

Calculated as:
$V_{X}=$
$\left(\sum x_{i}^{2}\right) / N-X^{2}$

Phenotype
$=\sum p_{i}\left(x_{i}-X\right)^{2}$

What Causes the Variation?

1. Variation in environmental conditions during development.

a. Differences in food, temperature, disease.
b. Maternal effects.
c. Variation in

Phenotype current conditions.

What Causes the Variation?

2. Genetic Variation,

factors inherited from parents and which to contribute to phenotypic variation in future generations.
a. Several components to genetic variation.
b. The part that makes offspring resemble their parents is additive genetic variance.

Phenotype
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Heritability

\qquad
The tendency for a character to be inherited by progeny is its heritability

1. $h^{2}=1$, character is completely heritable.
2. $h^{2}=0$, character is not heritable.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fitness

\qquad
We can define FITNESS as the ability of an individual to leave viable progeny.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fitness

We can define FITNESS as the ability of an individual to leave viable progeny.

Fitness Function

\qquad
The
relationship between a phenotypic character (z) and fitness
(w).

The Strength of Selection

the slope of the function shows

how strongly
selection is operating.
$p^{\prime}=p(z) w(z)$
So,
$p^{\prime}=p(z) w(z)$
$p^{\prime}=p(z) w(z)$

Fitness

The mean fitness of the population before selection, W, is

$$
W=\int W(z) p(z) d z
$$

$\boldsymbol{W}(\boldsymbol{z})=$ fitness of an individual with phenotypic value, z $\boldsymbol{p}(\boldsymbol{z})=$ the frequency of such individuals in the population

Relative Fitness

The relative fitness, $w(z)$, for individuals with phenotype z is the ratio of individual fitness to the population mean fitness

$$
w(z)=W(z) / W
$$

Selection

The distribution of phenotypes changes from $p(z)$ before selection, to $p^{\prime}(z)$ after selection.
These two distributions are related by relative fitness, $w(z)$, so that

$$
p^{\prime}(z)=w(z) p(z)
$$

The Change in Mean Fitness

The mean fitness of the breeding parents, W^{\prime}, changes as well to

$$
W^{\prime}=\int W(z) p^{\prime}(z) d z
$$

and because $p^{\prime}(z)=w(z) p(z)$ and $w(z)=\boldsymbol{W}(z) / \boldsymbol{W}$, by substitution,

$$
W^{\prime}=\int\left[W^{2}(z) / W\right] p(z) d z
$$

The Difference in Fitness

Thus, the difference in fitness, ΔW, between breeding parents and the unselected population is
$\Delta \boldsymbol{W}=\boldsymbol{W}^{\boldsymbol{\prime}}-\boldsymbol{W}$
$=\int\left[W^{2}(z) / W\right] p(z) d z-\int W(z) p(z) d z$

The Variance in Fitness

$$
\Delta W=\int\left[W^{2}(z) / W / p(z) d z-\int W(z) p(z) d z\right.
$$

can be rewritten as

$$
\begin{gathered}
{\left[\int W^{2}(z) p(z) d z-\int W^{2}\right] /[W]} \\
=V_{W} / W
\end{gathered}
$$

where V_{W} is the variance in fitness in the unselected population.

The Relative Change in Mean Fitness

The relative change in mean fitness as a result of selection, $\Delta W / W$, is thus equal to

$$
\Delta W / W=V_{W} / W^{2}
$$

This is the Opportunity for Selection.

The Opportunity for Selection

Crow (1958, 1962)

$$
I=V_{W} / W^{2}=V_{w}
$$

The fitness of breeding parents relative to the population before selection.

The variance in relative fitness, V_{w}, places an upper \qquad limit on the change in mean fitness from one generation to the next.

The Covariance Between Phenotype and Relative Fitness

$$
\Delta Z=\operatorname{Cov}(z, w[z])
$$

measures the change in the average phenotype that results from the relationship between phenotype and fitness.

As with \boldsymbol{W}, this expression is usually less than one.

The Relationship Between

 ΔZ and V_{w}The average fitness as well as the average phenotype may change as a result of selection

$$
\operatorname{Cov}(z, w[z]) /\left(V_{Z} V_{w}\right)^{1 / 2}
$$

measures the product moment correlation between phenotype and fitness.

Unless a perfect correlation exists, this expression too is less than one.

Hence, the variance in relative fitness, $\boldsymbol{V}_{\boldsymbol{w}}$, places an upper bound not only on the change in mean fitness itself, but also on the standardized change in the mean of every other phenotypic trait.

It was for this reason, that Crow $(1958,1962)$ defined I, the "opportunity for selection," as

$$
I=V_{W} / W^{2}=V_{w}
$$

