The Opportunity for Sexual Selection

Stephen M. Shuster

BIO 666: Animal Behavior Fall 2009 Northern Arizona University

The Current View of Sex Differences

Males and females are *defined* by differences in energetic investment in gametes. In most sexual species, females produce *few*,

large ova, whereas males produce *many*, *tiny sperm*.

Parental Investment Theory

(Bateman 1948; Williams 1966; Trivers 1972; Emlen & Oring 1977; Maynard Smith 1977; Clutton-Brock & Vincent 1991; Clutton-Brock & Parker 1992; Reynolds 1996; Ahnesjö et al. 2001; Alcock 2005)

•Predicts that gamete dimorphism *initiates* sexual selection.

- •The few, large ova of females are a *limited resource* for which males must compete.
- •Males are will be *more competitive* in mate acquisition, *less discriminating* in mate choice, and *less parental* toward offspring than females.

An Alternative View,

Sex differences are NOT due to differences in initial parental investment. Instead, sex differences are due to sex differences in *fitness variance*. i.e., in *selection intensity*

To Understand

Whether and to what extent the sexes may become distinct,

It is necessary to measure the mean and the *variance in fitness* for males and females.

This Means That:

The **variance** in offspring numbers in one sex can *far exceed* the **variance** in offspring numbers in the other sex.

Males (or females) with *no* mates will produce *no* offspring at all. Thus, unsuccessful males (or females) produce *fewer* offspring than the average female.

This Is Why:

Sexual selection is one of the most powerful evolutionary forces known,

It produces such rapid changes in phenotype.

What Do We Measure?

The variance in fitness; is proportional to the strength of selection.

The sex difference in the variance in fitness; its magnitude determines whether and to what degree the sexes will diverge.

What Tools Do We Use?

The Mean and Variance in Fitness The Opportunity for Selection Analysis of Variance

The Mean and Variance in Fitness

Consider a population in which,

 $N_{males} = 100$ $N_{females} = 100$ Sex ratio = $R = N_{females} / N_{males} = 1$

Females mate once, males can mate more than once.

In General $V_{M} = 0$ V_M = 1 becomes. $V_{M} = 2.32$

As *H* increases, so does the variance in mate numbers, V_M .

As m_0 increases, *fewer* males contribute to the next generation.

Thus, the greater the variance in fitness, the stronger selection

Why? THE ZERO CLASS GETS **INCREASINGLY LARGE!!!**

The Opportunity for Selection: What is it and What does it measure?

$I = V_W / W^2 = V_w$

Compares the fitness of breeding parents *relative* to the population before selection.

The variance in relative fitness, V_w , places an upper limit on the total phenotypic change per generation.

An Upper Bound Because,

Heritability (h^2) is usually < 1.

The correlation between the variance in relative fitness and phenotypic change, i.e., $Cov(\Delta Z, V_w)$ is usually < 1.

By chance, bad things happen to good genes and vice versa.

How is I_{3} Measured?

 $W_{\vec{\mathcal{S}}} = \sum_{\vec{\mathcal{S}}} O_i / N_{\vec{\mathcal{S}}}$ where O_i the brood size of the *i*-th male, who may have his brood with > 1 female.

$$V_{\vec{a}} = \Sigma_{\vec{a}} (W_{\vec{a}} - O_i)^2 / N_{\vec{a}}$$

 $I_{\vec{c}} = V_{\vec{c}} / (W_{\vec{c}})^2$

How is I_{p} Measured?

$$W_{\text{q}} = \Sigma_{\text{q}} O_j / N_{\text{q}}$$

where O_j the brood size of the *j*-th female who may have her brood with >1 male.

$$V_{\text{q}} = \Sigma_{\text{q}} (W_{\text{q}} - O_j)^2 / N_{\text{q}}$$

$$I_{\text{Q}} = V_{\text{Q}} / (W_{\text{Q}})^2$$

How are
$$I_{c}$$
 and I_{c} Related?
First: Every offspring has one
mother and one father
 $\Sigma_{c}o_{i} = \Sigma_{c}o_{j}$
 $W_{c} = RW_{c}$
Where $R = N_{c}/N_{c}$

N Mates	Frequency	Mean # of Offspring	Variance in Offspring #
0	p_{θ}	00	0 <i>V</i> ₀
1	p_1	10	$1V_0$
2	p_2	20	$2V_0$
3	p_3	30	$3V_0$
4	p_4	40	$4V_o$
•	•	•	•
k	p_k	kO	kV_0

This Means That:

The **variance** in offspring numbers in one sex can *far exceed* the **variance** in offspring numbers in the other sex.

Males (or females) with *no* mates will produce *no* offspring at all. Thus, unsuccessful males (or females) produce *fewer* offspring than the average female.

As in ANOVA,

$$V_{total} = V_{within} + V_{among}$$

= The *average of the variances* in offspring numbers within the classes of males who mate +

The *variance of the averages* in offspring numbers among the classes of mating *and* nonmating males

$$V_{\vec{o}} = \sum p_j (jV_{\varphi}) + \sum p_j (jW_{\varphi} - RW_{\varphi})^2$$
$$= RV_{\varphi} + W_{\varphi}^2 V_{mates}$$

How are
$$I_{\beta}$$
 and I_{φ} Related?

Third: Apply these definitions,

Recall that \mathbf{RW}_{φ} = average number of offspring/male. Dividing \mathbf{V}_{\Diamond} by $[\mathbf{RW}_{\varphi}]^2$ gives

$$V_{\text{d}} / [RW_{\text{q}}]^2 = [RV_{\text{q}} + W_{\text{q}}^2 V_{mates}] / [RW_{\text{q}}]^2$$

which gives

$$I_{\text{i}} = (1/R)I_{\text{i}} + I_{mates}$$

Conventional and Reversed Sex Roles

For species with *conventional* sex roles

$$I_{\vec{c}} = (1/R)I_{\varphi} + I_{mates}$$

For species with *reversed* sex roles

$$I_{\text{Q}} = (R)I_{\text{A}} + I_{mates}$$

The Sex Difference in the Strength of Selection, ΔI

$$\Delta I = \{ I_{\text{c}} - I_{\text{c}} \} = I_{mates}$$

When $I_{\vec{c}} > I_{\phi}$, sexual selection modifies *males* When $I_{\phi} > I_{\vec{c}}$, sexual selection modifies *females* When $\Delta I = 0$, either there is *no* sexual selection Or sexual selection is *equally strong* in both sexes

The Opportunity for Selection

Crow (1952, 1964)

$$I = V_W / W^2$$

The fitness of breeding parents *relative* to the population before selection.

The variance in fitness, V_{W} , places *an upper limit* on the change in mean fitness from one generation to the next.

Phenotype

The mean phenotype in the population before selection, Z, is

z = individuals with phenotypic value, zp(z) = the frequency of such individuals in the population

Heritability

- The tendency for a character to be inherited by progeny is its *heritability*
- 1. $h^2 = 1$, character is completely heritable.
- 2. $h^2 = 0$, character is not heritable.

Fitness

We can define FITNESS as the ability of an individual to leave viable progeny.

Fitness

We can define FITNESS as the ability of an individual to leave viable progeny.

Fitness

The mean fitness of the population before selection, W, is

 $W = \int W(z)p(z)dz.$

W(z) = fitness of an individual with phenotypic value, z p(z) = the frequency of such individuals in the population

Relative Fitness

The relative fitness, w(z), for individuals with phenotype z is the ratio of individual fitness to the population mean fitness

w(z) = W(z)/W

Selection

The distribution of phenotypes changes from p(z) before selection, to p'(z) after selection. These two distributions are related by relative fitness, w(z), so that

$$p'(z) = w(z)p(z)$$

The Change in Mean Fitness

The mean fitness of the breeding parents, *W*', changes as well to

$$W' = \int W(z)p'(z)dz$$

and because p'(z) = w(z)p(z) and w(z) = W(z)/W, by substitution,

$$W' = \int [W^2(z)/W]p(z)dz$$

The Difference in Fitness

Thus, the difference in fitness, ΔW , between breeding parents and the unselected population is

 $\Delta W = W' - W$

 $= \int [W^2(z)/W]p(z)dz - \int W(z)p(z)dz$

The Variance in Fitness

 $\Delta W = \int [W^2(z)/W]p(z)dz - \int W(z)p(z)dz$

can be rewritten as

 $\int W^{2}(z)p(z)dz - \int W^{2}]/[W]$

 $= V_W / W$,

where V_W is the variance in fitness in the unselected population.

The *Relative* Change in Mean Fitness

The *relative* change in mean fitness as a result of selection, $\Delta W/W$, is thus equal to

 $\Delta W/W = V_W/W^2$

This is the Opportunity for Selection.

The Opportunity for Selection

Crow (1958, 1962)

$$I = V_W / W^2 = V_w$$

The fitness of breeding parents *relative* to the population before selection.

The variance in relative fitness, V_{w} , places *an upper limit* on the change in mean fitness from one generation to the next.

The Covariance Between Phenotype and Relative Fitness

$\Delta Z = Cov(z, w[z])$

measures the change in the average phenotype that results from the relationship between phenotype and fitness.

As with W, this expression is usually less than one.

The Relationship Between ΔZ and V_w

The average fitness as well as the average phenotype may change as a result of selection

$Cov(z, w[z]) / (V_Z V_w)^{1/2}$

measures the product moment correlation between phenotype and fitness.

Unless a perfect correlation exists, this expression too is less than one.

Hence, the variance in relative fitness, V_w , places an *upper bound* not only on the change in mean fitness itself, but also on the standardized change in the mean of *every other* phenotypic trait.

It was for this reason, that Crow (1958, 1962) defined *I*, the "opportunity for selection," as

 $I = V_W / W^2 = V_{w^*}$