The Quantitative Paradox of Sexual Selection

\qquad
\qquad
Stephen M. Shuster
BIO 666: Animal Behavior
Fall 2009
Northern Arizona University

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sexual Selection

 Darwin's Two Questions:
-Why do males and females in \qquad
the same species differ from one another, with male characters \qquad more exaggerated than those of females?
-Why do the males of related species exhibit greater differences in morphology than females of the same, related species?

The First Question

-Is a microevolutionary one.
-The pattern is seen within species of most taxa.
-Indicates that
selection acts to differentiate the sexes.

- Males are affected more than females.

The Second Question

-Is macro-evolutionary one.
-The pattern is observed across species, within genera or families of most taxa.

- Large differences in male phenotype among closely related taxa are the signature of a rapid and powerful evolutionary force. \qquad
\qquad

Phenotypic Differences Between

\qquad the Sexes

- Are not associated with essential reproductive physiology.
- Are not associated with development of male and female gametes.
- Exaggerated plumage, coloration, behavior, and morphology of males are correlated with but are not necessary for reproduction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Yet These Differences Are So Marked That The Exaggerated Traits of Males Define Many Species.

Male-Female Differences

- Only male red-winged blackbirds (Aegelaius phonecius phonecius; Searcy 1979;
Weatherhead \& Robertson 1979), are black with red epaulets on the wings, females are inconspicuous and dull brown in color.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Only males have blue heads in blue head wrasse (Thallasoma bifasciatum Petersen et al. 2001).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Male-Female Differences

- Only male stag beetles (Lucanus cervus; Price 1997) possess enlarged, antler-like mandibles.

Male-Female Differences

- In balloon flies (Hilara santor; Downes 1970), only the males carry balloons of silk as nuptial gifts for females .

\qquad
\qquad
\qquad
\qquad
\qquad

"Trivial" Male Characters

- Darwin saw no obvious functional relationship between the exaggerated traits of males and the physical environment.
- In fact, Darwin considered sexual selection weak.

Darwin on Sexual Selection

sexual selection "...depends, not on a \qquad struggle for existence, but on a struggle between males for possession of the females; the result is not death of the unsuccessful competitor, but few or no offspring. Sexual selection is, therefore, less rigorous than natural selection" (1859, p. 88).

Conflict

- How can sexual selection appear to be one of the most powerful evolutionary forces known,
- Yet Darwin himself considered sexual \qquad selection less rigorous than natural selection?

The Micro-evolutionary Predictions

- Suggest that Darwin was right.
- Single-sex selection, sex-limited expression, age-limited expression and viability selection experiments all predict that sexual selection will be slow and weak.

Selection on Both Sexes

Selection is as strong in males as it is in females, thus,

$$
\begin{gathered}
S_{\text {males }}=S_{\text {females }} \\
\text { or, } \\
S_{\text {total }}= \\
\left(S_{\text {males }}+S_{\text {females }}\right) / 2
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conspicuous Male Divergence in Traits

- The taxonomic pattern stands in sharp contrast with the expectation of a slow evolutionary response to single sex selection.
- This contrast is even starker when considering the sex limited expression of male phenotypes.

Sex-Limited Expression of Traits

- Sex-limited expression is an evolved property of a species' developmental genetic system.
- In general, genetic correlations between the sexes produce a phenotypic response in both sexes when selection occurs in only one sex.

Wilson's Bird of Paradise (Diphyllodes respublica)

Male AND female heads are blue and featherless

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Male Nipples

-The fitness advantage females gain by having nipples and breasts is clear; and may be
large.
-The optimal expression of nipples in males may therefore be displaced because of this advantage in \qquad females.

Selection for Modifier Alleles

- Genetic correlations between the sexes must
\qquad be modified for sex-limited expression to occur, as exists when male phenotypes
\qquad become exaggerated.
- Modifier genes act to reduce the genetic \qquad correlation in trait expression between the sexes.
- This makes total selection weaker and makes trait evolution even slower.

Sex-Limited Expression of Traits

- Sex-limited expression is an evolved property of a species' developmental genetic system.
- In general, genetic correlations between the sexes must be modified for sex-limited expression to occur.
- This takes time.

Viability Selection on Males

- Exaggerated male traits make males more conspicuous to predators. Calling male crickets expend much energy in calling and suffer increased predation by bats.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Viability Selection on Males

- Male lampyrid beetles (Lloyd 1975) encounter a sex-specific risk of predation, often from heterospecific "femmefatales" that mimic the signals of receptive females and eat the

\qquad
\qquad
\qquad responding males.
\qquad
\qquad

Viability Selection on Females

- In sage grouse, females may suffer increased predation in their attempts to mate with particular males (Höogland \& Alatalo 1998).

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Viability Selection on Females

- In yellow dungflies (Scatophaga stercoraria) females may be injured or killed by the mating attempts of males (Parker 1970)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Sex Specific Selection Differentials for \qquad an Exaggerated Male Trait

	Viability	Reproduction Selection	Differential

*A selection differential greater than zero indicates that the trait enhances this component \qquad of fitness and is favored by selection while a negative selection differential (<0) indicates the opposite.

A Poor Fit

- The macro-evolutionary pattern suggests
\qquad that selection for exaggerated characters in males is rapid and strong.
- Darwin, micro-evolutionary theory, and studies of selection all predict that selection \qquad acting only on one sex will be slow and weak.

The Quantitative Paradox of Sexual Selection

How can sexual selection be strong enough to counter the opposing forces of male and female viability selection?

Darwin's Two Components of Sexual Selection

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Male-Male Combat: winners mate, losers do not

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Female Choice: chosen males mate, not chosen do not.

Current Approaches to the Study of Sexual Selection

\qquad
-Identify the context of selection.

- Measure the degree to which
\qquad
\qquad traits are modified by selection. - Speculate on the intensity of selection. \qquad
\qquad

These Approaches Do Not Address the Quantitative Paradox

Identifying the mechanism of sexual selection is not the same as identifying its evolutionary effect;
To do this, we must measure the actual \qquad
intensity of sexual selection \qquad
\qquad

Intensity of Sexual Selection

"If each male \qquad secures two or more females, many males would not be able to pair."
C. Darwin, 1871, p. 266.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Instantaneous Calculation:

$$
N_{\text {donuts }}=10
$$

$N_{\text {gradstudents }}=10$
$\boldsymbol{R}_{\boldsymbol{d}}=(10$ donuts $/ 10$ students $)=1$
Therefore, the average number
of donuts per student eating donuts,

$$
\boldsymbol{D}=\boldsymbol{R}_{\boldsymbol{d}}=1
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

But if One Student Takes Two...

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notice, \qquad

$$
N_{\text {donuts }}=10
$$

$N_{\text {gradstudents }}=10$
$\boldsymbol{R}_{\boldsymbol{d}}=(10$ donuts $/ 10$ students $)=1$
But \boldsymbol{D} increases from 1 per student, to 1.111 per student [$=10$ donuts $/(10-1)$ students $]$.

If We Let,

$\boldsymbol{p}_{\boldsymbol{d}}=$ fraction of students with donuts $(=9 / 10=.9)$.
$\left(1-\boldsymbol{p}_{\boldsymbol{d}}\right)=\boldsymbol{p}_{0}$, the fraction of students without donuts

$$
\begin{gathered}
(=1 / 10=.1) \\
\boldsymbol{p}_{\boldsymbol{d}}+\boldsymbol{p}_{\boldsymbol{0}}=.9+.1=1 .
\end{gathered}
$$

Three Relationships

1. The distribution of donuts over \qquad all students, \boldsymbol{R}_{d}, can be expressed as,

$$
\boldsymbol{R}_{\boldsymbol{d}}=\boldsymbol{N}_{\text {donuts }} / \boldsymbol{N}_{\text {students }}
$$

Or as,

$$
\boldsymbol{R}_{d}=\boldsymbol{p}_{\boldsymbol{d}}(\mathrm{D})+\boldsymbol{p}_{\boldsymbol{0}}(0)
$$

It is Easy to See That

$$
\boldsymbol{R}_{\boldsymbol{d}}=\boldsymbol{p}_{\boldsymbol{d}}(\mathrm{D})+\boldsymbol{p}_{\boldsymbol{0}}(0)
$$

Because $\boldsymbol{p}_{0}(0)=0$, $\boldsymbol{p}_{\boldsymbol{d}}(\boldsymbol{D})=.9(1.111)=1$ as it should.

Relationship \#2

Because $\boldsymbol{p}_{\boldsymbol{d}}=\left(1-\boldsymbol{p}_{0}\right)$, we can rewrite $\boldsymbol{R}_{\boldsymbol{d}}=\boldsymbol{p}_{\boldsymbol{d}}(\boldsymbol{D})$ as,

$$
\boldsymbol{p}_{0}=1-\left(\boldsymbol{R}_{\boldsymbol{d}} / \boldsymbol{D}\right)
$$

This expression shows how the fraction of students without donuts, \boldsymbol{p}_{0}, is related to $\boldsymbol{R}_{\boldsymbol{d}}$ and \boldsymbol{D}.

Relationship \#3

If the ratio of donuts to students, \boldsymbol{R}_{d}, remains at 1 , this equation simplifies to

$$
\boldsymbol{p}_{\boldsymbol{0}}=1-(1 / \boldsymbol{D})
$$

What does this mean?

Graphically, $p_{0}=1-(1 / D)$

Intensity of Sexual Selection \qquad

"If each male secures two or more females, many males would not be able to pair."
C. Darwin, 1871, p. 266.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sexual Selection is a Powerful Evolutionary Force Because:

For every male who sires young with with several females, there must be several males who fail to reproduce at all.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What Do We Measure?

The variance in fitness; is proportional to the strength of selection.
The sex difference in the variance in fitness; its magnitude determines whether and to what degree the sexes \qquad will diverge.

What Tools Do We Use?

The Mean and Variance in Fitness

The Opportunity for Selection

Analysis of Variance

The Current View of Sex Differences

Males and females are defined by differences in energetic investment in gametes.
In most sexual species, females produce few, large ova, whereas males produce many,
 tiny sperm.

Parental Investment Theory

\qquad
(Bateman 1948; Williams 1966; Trivers 1972; Emlen \& Oring 1977; Maynard Smith
1977; Clutton-Brock \& Vincent 1991; Clutton-Brock \& Parker 1992; Reynolds 1996; Ahnesjö et al. 2001; Alcock 2005)
-Predicts that gamete dimorphism initiates sexual selection.

-The few, large ova of females are a limited resource for which males must compete.
-Males are will be more competitive in mate acquisition, less discriminating in mate choice, and less parental toward offspring than females.

Sex Role Reversal

Males become more parental, females become more aggressive and showy.

Both sexes retain their sexual identities in gamete size and sexual physiology.
How is this possible if parental investment is causal?

Moreover,

Sex differences in parental investment fail to explain the details of male parental care. In sticklebacks, male care enhances a male's ability to mate. In seahorses, male care reduces male mating opportunities. How is this possible if parental investment is causal?

An Alternative View,

Sex differences are NOT due to differences in initial parental investment.

Instead, sex differences are due to sex differences in \qquad fitness variance.

To Understand

\qquad
Whether and to what extent the \qquad sexes may become distinct,

It is necessary to measure the
\qquad
\qquad mean and the variance in fitness for males and females.

