BIO 682 Nonparametric Statistics Spring 2010

Steve Shuster

http://www4.nau.edu/shustercourses/

Lecture 3

Another Example:

1. The debate in 1970s between ecologists who thought community structure was more influenced by stochastic processes than by competition.

1. Competitionists - structure differences are due to competition – thus accepted a higher α (and a lower β).

2. *Stochastitians* - wanted to avoid accepting causality too readily: perjoratively known as "β-maximizers" (low α; high β)

Things to Remember

1. To figure power it is necessary to:

a. Define an alternative hypothesis

b. in the above case, $H_1: p = 2q$

2. Then a frequency distribution is generated for observations for this result.

Note That:

1. How much of the distribution for H_1 overlaps that of H_o (87%)

a. Thus, for this sample size and for the parameters of H_1 , the two hypotheses are *virtually identical*.

 Note too, that in this case, decreasing α (increasing acceptance region) also increases β.

a. defeats the purpose of maximizing POWER

Scales of Measurement

A. Nominal Data

- 1. The weakest level of information.
 - a. Uses numbers or symbols to classify individuals, objects, etc.
 - b. Also known as *classificatory scale*.

Nominal Data

2. Formal properties

a. All cases are equal within class, mutually exclusive with other classes.

Nominal Data: Examples

a. Telephone numbers (at least within a geographical area), ssn#.

b. Difference in sign (+, -).

c. It is possible to have totals in each category.

Nominal Data

1. Types of tests:

a. Goodness of fit.

b. Measures of association.

c. Indices of diversity1. Shannon-Weiner (Shannon-Weaver) Index of diversity.

2. For examining the distribution of observations among categories.

Shannon-Weiner Index of Diversity k $H = -\sum p_i \log p_i$ i=1where: k = the number of categories; $p_i = \text{proportion of sample in category } i$, $p_i = (f_i/n_i)$ $f_i = \text{number of cases in category } i$ $n_i = \text{sample size of category } i$ N = total cases

An Easier Method Is,

 $\mathbf{H} = [\mathbf{N} \log \mathbf{N} - \Sigma f_i \log f_i] / \mathbf{N}$

where: f_i = number of cases in category iN = total cases

This eliminates necessity for calculating p_i

An Estimate of Eveness

$\mathbf{J} = \mathbf{H} / \mathbf{H}_{max}$

where H_{max} is the maximum diversity possible.
a. Perhaps a better estimator because the magnitude of H is affected by:

the number of categories
the distribution of data.

Other Problems

1. The SW index is un-standardized.

a. Makes its use somewhat suspect unless standardized across analyses.

2. Confidence limits are not clearly defined.

a. Therefore, it is difficult to make comparisons across situations.

The S-W Equation

n log n - $\sum f_i \log f_i$ H =n

Note that here n = N.

Solution to a Problem

1. Because the SW index is *unstandardized*.

a. You need to make multiple estimates of the index at each location; the more the better.b. Then, calculate the mean and SD of

those values.

c. Estimate 95% CI for comparisions with other locations

d. Or, compare values of J using ANOVA.

Ordinal Data

1. Data that contains information, not only on category, but also on *relationship* to other categories.

Ordinal Data

2. Formal properties

a. This scale incorporates equivalence *within* class, but also order *between* classes.

Ordinal Data: Examples

1. Military ranks a.Private, Corporal, Sergeant, Lieutenant

2. Grades a.Excellent, Very Good, Good, Fair, Do Not Fund.

3. Numerical ranking of any kind.

Ordinal Data: Parameters

1. Since nonparametric statistics make no assumptions about mean or variance.

a. The appropriate indices of central tendency, dispersion are the *median*, and the *range*.

Ordinal Data: Parameters

1. Types of tests:

a. Tests are based on the median.

b. Calculated as:

1. $X_{[(n+1)/2]}$ if N is odd. a. Thus, if n = 7, median is 4.

2. $\{X_{(n/2)}+X_{[(n/2)+1]}\}/2$ if N is even. a. Thus, if n = 8, median is 4.5.

Ordinal Data: Parameters

1. There are no assumptions about the shape of the data distribution.

But there are hypotheses about *order*.
 Since there are no estimates of variance, this information is given by the *range*.

a. Calculated as:

1. X_n - X₁

b. Thus, if data ranges from 1.2g to 3.4g; range = (3.4g - 1.2g) = 2.2g.

Ranking of Data

1. Recall that information useful for nonparameteric tests is often encoded in *ranks*.

- 2. This is fine, as long as ranks are not tied.
- 3. If ties occur, it can indicate that the scale of measurement is *not fine enough*.
- 4. This can cause difficulties because tied ranks can prevent accurate discrimination among groups.

Tied Ranks

1.Most operations permit it unless it becomes excessive.

2. Ties are handled by calculating the sum of all tied ranks and dividing by their number.

 $R_i = \sum r_j / n_j$

Where R_i = the i-th assigned rank r_j = the actual rank of the j-th value n_i = the number of cases with value j.

Interval Data

1. Data that contains information on:

a. Category

b. Order

c. Distance between points

Interval Data

2. Formal properties:

a. Includes all of the above properties (equivalence, order).

b. Adds amount.

1. Important to assume that amount is *standardized*.

2. Many questionnaires are not.

Interval Data: Examples

1. Celsius, Fahrenheit, Kelvin scales for temperature.

2. "agree, somewhat disagree, agree, strongly agree."

a. Doesn't always work; distances are not always equivalent.

b. These are scales without a true zero (its value is arbitrary).

Interval Data

1. Types of tests:

a. This is the first quantitative scale of measurement.
b. The distribution of cases *can* be normal.
1. If so, assumptions of parametric

tests *are* met.

2. Parametric tests *are* recommended.

However,

1. If data do not meet assumptions for parametric tests,

a. It is possible to use nonparametric tests, although some information may be lost.

Ratio Data

 Data that contains all the above information plus:
 a. Have a *true zero* point of origin.

2. Formal properties:a. All of those aboveb. A constant ratio between two scales of measurement.

Ratio Data: Examples

speed (distance/time);
pressure (force/area),

1. Types of tests:

a. Nonparametric tests are not really appropriate.

b. However, ratio (and percentage) data can be non-normally distributed.

c. Most data of this sort meets parametric assumptions or can be transformed to do so.

Tests Using Nominal Scale Data

One sample cases:

- 1. These are tests that consider hypotheses about a single sample of data.
 - a. Usually a goodness of fit test.
 - b. To determine whether a sample fits a theoretical distribution, or distribution with pre-specified characteristics.

Questions Include

a. Is there a difference in location (central tendency) between sample and population?

b. Is there a difference between observed and expected frequency?

c. Is there a difference between observed and expected proportions?

d. Is the sample drawn from a population with a specified distribution (normal or uniform)?

All of these questions

- 1. Can also be addressed using parametric statistics, often a t-test.
- a. However you may not want to/be able to use this test because:
 - 1. Assumptions required by parametric tests are violated.
 - 2. Data are not in a form required by parametric tests.

Useful One Sample Tests

- 1. Binomial test
- 2. Goodness of fit tests
 - a. Chi-square
- b. G-test: one sample tests, heterogeneity tests

Binomial Test

Many situations exist in which data are arranged as 2 mutually exclusive classes.

Binomial Test

2. The method for expressing the frequency of these types is familiar:

a. Assuming 2 types, and expressing these as probabilities of occurrence:

1. $P_{[x=0]} = p$; say .4 ("uninfected") 2. $P_{[x=1]} = q$ where q = (1 - p); the portion of the sample that is not p;

3. Thus (1 - .4) = .6 ("infected")

Binomial Test

b. If the population is large, the probability of obtaining an uninfected individual depends on the number of times we draw:

$$(p+q)^N = 1$$

Where N = the number of draws from the population.

Binomial Test

a. If we let N = 5, then by expanding the equation, we obtain the probabilities of obtaining different combinations of infected and uninfected individuals :

 $p^5 + 5p^4q + 10p^3q^2 + 10p^2q^3 + 5pq^4 + q^5 = 1$

Binomial Expansion

$$p^{5} + 5p^{4}q + 10p^{3}q^{2} + 10p^{2}q^{3} + 5pq^{4} + q^{5}$$

$$= 1$$

$$p^{5} = \text{all 5 uninfected}$$

$$5p^{4}q = 4 \text{ uninfected}, 1 \text{ infected}$$

$$10p^{3}q^{2} = 3 \text{ uninfected}, 2 \text{ infected}$$

$$10p^{2}q^{3} = 2 \text{ uninfected}, 3 \text{ infected}$$

$$5pq^{4} = 1 \text{ uninfected}, 4 \text{ infected}$$

$$q^{5} = \text{all infected}$$

Alternatively,

- 1. We can figure out the exact probability:
- a. Let k = the sum of counts of one class.
- b. Let N = total number of opportunities to choose.
- c. The number of objects in *k* and in *N*-*k* is given by the equation for a binomial distribution.

