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Lecture 4

Binomial Test
1. Also, we can test specific hypotheses 

a. Whether the observed distribution 
occurred by chance

a. Ho: Pi = Po.

2. Or if it deviates from this distribution 
(i.e., could not have occurred by chance).

b. H1: Pi ≠ Po.

Example: 
a. Suppose you are 

observing a lek of male 
sage grouse (Nmales = 6)
1. 5 females will enter 

the lek and mate.
2. You want to figure 

out the probability that 
a male will mate more 

than 2 times.
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Method:
1. Let k = the sum of counts of one class (# 

mated males) = 2.
2. Let N = total number of opportunities a 
male has to mate (total # of mated males) 

= 5.
3. Let p = proportion of observations in 

which x=1.
4. Let q = (1 – p) = proportion of 

observations in which x=0.

Method:
5. For each mating, each males probability 

of mating is:

1/Nmales = 1/6 = p
of not mating = (1 - p) =5/6 = q.

6. The number of objects in k and in N-k is 
given by the equation for a binomial 

distribution:

The Binomial Equation
N

P[k] =          pkqN-k

k
Where,

N N!
= 

k k!(N-k)!
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The Exact Probability
1. That one of the males will mate twice is:

N
P[x=2] =          pkqN-k

k
5!

P[x=2] =            (1/6)2(5/6)3 = .16
2!3!

However,
2. We are really interested in finding out the 
degree to which this could occur by chance.

a. Thus, we need to find out the probability 
of obtaining values as extreme 

or more extreme as the observed value. 
b. Or, what is the probability that a male will 

mate two and fewer times. 

b. Thus, P[k < 2] = P[k=0] + P[k=1] + P[k=2]

So,
5!

P[k=0] =           (1/6)0(5/6)5 = .40
0!5!

5!
P[k=1] =           (1/6)1(5/6)4 = .40

1!4!

5!
P[k=2] =           (1/6)2(5/6)3 = .16

2!3!
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And,
P[k ≤ 2] = .96.  

Thus, the chances that one male will mate two 
or fewer times = .96.

Thus, probability of mating more than 2 
times is:

1 - P[k ≤ 2] = .04

This is unlikely to occur by chance alone with 
p = 0.05.

Binomial Test, Continued
Small samples (N < 35)

1. S&C present a table in the back of the book 
that calculates the probabilities for various 

values of N and k if Ho: p = 1/2.
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Binomial Test: Example 

1. For N = 10 and k = 3, one-tailed probability 
is .172.

Binomial Test: Example 
a. Note that one-tailed test is used because you 

are predicting in advancein advance which of the 
values will be smaller.

b. If a two tailed test is used, you doubledouble the 
value of P.
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Large samples (N > 35)

1. As N increases, the binomial distribution 
approaches a normal distribution.

a. It is then possible to use values of p, q and 
N to estimate z,  

A parameter that estimates the probability of 
occurrence of observed value, x,  

based on a binomial distribution.

The Equation Is:
(x – µx)

z =
σx

Which is equivalent to,
x - Np

= 
(Npq)1/2

Look up the value of z on table of normal 
distribution (Appendix A in S&C).



7

So, the 
probability that a  
calculated value 
of z = 1.65 could 
have occurred by 

chance is, 
0.0495.

Rule of Thumb: 
1. If Npq > 9 to use this technique.

2. For example:

250.50.5100

12.50.50.550

6.250.50.525

qpN
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Goodness of Fit Tests

1. Most people are familiar with goodness of fit 
tests (chi-square)

a. Considers situations when researcher wants 
to see whether observed distribution of counts 

fits predicted frequency for various 
categories.

b. X2 equals the sum of all (squared deviations 
of observed values from expected)/ 

expected.

Chi Squared Test

1. Where, for k categories, Oi is the observed 
value of the i-th class, and Ei is the expected 

value of the i-th class.

Chi Squared Test

2. It is easy to see that small deviations from 
expected -> small X2.

a. Significance is tested using a chi-squared 
distribution with df = k-1.
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Chi Squared Test

3. Expected values are determined by the 
hypothesis. 

a. Most often simply equal expected 
frequencies across groups (N/k).

b. This hypothesis is intrinsic to the data.

Expected Frequencies
2. Also can be determined by some extrinsic

hypothesis.
a. Mendelian inheritance: 

1. 75:25, as expected in monohybrid cross 
with dominance.

2. 9:3:3:1 as expected with dihybrid cross.

Example
1. The frequency of male 

morphs in  P. sculpta
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Example
Male type: α β γ N

Expected: 33.3  33.3 33.3 100

Observed: 82 4 14 100

X2 = [(82-33.3)2]/33.3 + [(4-33.3)2]/33.3 + [(14-
33.3)2]/33.3 = 108.1

df = 3-1 = 2;   

X2
[0.05, 2] = 5.99, P >> 0.001

Important assumptions:
1. If k = 2, smallest expected value should 

be > 5.

2. When df > 1 (i.e., k > 2), can't use the test if 

a. > 20% of expected frequencies are < 5.

b. Any expected frequency is < 1.

This Is Important Because:
1. Distribution of values for X2 test 

approximates the actual X2 distribution only 
as expected frequencies become large.

2. Small cell values can be overcome by pooling 
cells.

3. More on pooling later.
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Chi Squared Test

1. Where, for k categories, Oi is the observed 
value of the i-th class, and Ei is the expected 

value of the i-th class.

Chi Squared Test

2. It is easy to see that small deviations from 
expected -> small X2.

a. Significance is tested using a chi-squared 
distribution with df = k-1.

Chi Squared Test

3. Expected values are determined by the 
hypothesis. 

a. Most often simply equal expected 
frequencies across groups (N/k).

b. This hypothesis is intrinsic to the data.
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Expected Frequencies
2. Also can be determined by some extrinsic

hypothesis.
a. Mendelian inheritance: 

1. 75:25, as expected in monohybrid cross 
with dominance.

2. 9:3:3:1 as expected with dihybrid cross.

Example
1. The frequency of male 

morphs in  P. sculpta

Example
Male type: α β γ N

Expected: 33.3  33.3 33.3 100

Observed: 82 4 14 100

X2 = [(82-33.3)2]/33.3 + [(4-33.3)2]/33.3 + [(14-
33.3)2]/33.3 = 108.1

df = 3-1 = 2;   

X2
[0.05, 2] = 5.99, P >> 0.001
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Important assumptions:
1. If k = 2, smallest expected value should 

be > 5.

2. When df > 1 (i.e., k > 2), can't use the test if 

a. > 20% of expected frequencies are < 5.

b. Any expected frequency is < 1.

This Is Important Because:
1. Distribution of values for X2 test 

approximates the actual X2 distribution only 
as expected frequencies become large.

2. Small cell values can be overcome by pooling 
cells.

3. More on pooling later.

Goodness of Fit Tests

1. Most people are familiar with goodness of fit 
tests (chi-square)

a. Considers situations when researcher wants 
to see whether observed distribution of counts 

fits predicted frequency for various 
categories.

b. X2 equals the sum of all (squared deviations 
of observed values from expected)/ 

expected.
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G-tests
1. Another goodness of fit test.

a. Similar to chi-squared, except that logarithms 
are used.

b. Makes it computationally simpler, 
especially with complex designs.

2. Also, use of logarithms makes individual 
tests additive

a. This permits partitioning of heterogeneity
tests similar to what is possible with 

ANOVA.

Calculated As:

where: a = # of classes (k in other notation).
fi = observed number of counts in the i-th class.

fi-hat = expected number of counts in the i-th
class; = pi(N)

with (a – 1) degrees of freedom.

Previous Example
Male type: α β γ N

Expected: 33.3  33.3 33.3 100

Observed: 82 4 14 100

G = 2{[82 ln (82/33.3)] + [4 ln (4/33.3)] + [14 
ln (14/33.3)]}

= 2{73.9 - 8.5 -12.1}
= 106.5

X2
[0.05, 2] = 5.99, P >> 0.001
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Note:
Note that the value of G is less than the value 

of Chi-squared; for this test 
this provides a more conservative test, because 

the sample size is relatively large.

Properties of G-tests
1. Tend to generate higher probability of Type I 

error than X2.
a. i.e., G values are often higher than X2

b. Mainly with small sample sizes,
2. This can be remedied using

Williams’ Correction.
a. A method for making values of G more 

conservative.


