BIO 682 Nonparametric Statistics Spring 2010

Steve Shuster

http://www4.nau.edu/shustercourses/BIO682/index.htm

Lecture 4

Binomial Test

1. Also, we can test specific hypotheses a. Whether the observed distribution occurred by chance a. $H_0: P_1 = P_0$.

2. Or if it deviates from this distribution (i.e., *could not* have occurred by chance). b. $H_1: P_1 \neq P_0$.

Example:

a. Suppose you are observing a lek of male sage grouse $(N_{males} = 6)$

1. 5 females will enter the lek and mate.

2. You want to figure out the probability that a male will *mate more than 2 times*.

Method:

1. Let k = the sum of counts of one class (# mated males) = 2.

2. Let N = total number of opportunities a male has to mate (total # of mated males) = 5.

3. Let p = proportion of observations in which x=1.

4. Let q = (1 - p) = proportion of observations in which x=0.

Method:

5. For each mating, each males probability of mating is:

 $1/N_{males} = 1/6 = p$ of not mating = (1 - p) = 5/6 = q.

6. The number of objects in *k* and in *N*-*k* is given by the equation for a binomial distribution:

The Binomial Equation

$$P[k] = \begin{bmatrix} N \\ k \end{bmatrix} p^{k}q^{N-k}$$

Where,
$$\begin{bmatrix} N \\ k \end{bmatrix} = \frac{N!}{k!(N-k)!}$$

The Exact Probability

1. That one of the males will mate *twice* is:

$$P_{[x=2]} = {N \choose k} p^{k} q^{N-k}$$
$$P_{[x=2]} = \frac{5!}{2!3!} (1/6)^{2} (5/6)^{3} = .16$$

However,

- 2. We are really interested in finding out the degree to which this could occur *by chance*.
 - a. Thus, we need to find out the probability of obtaining values *as extreme*

or more extreme as the observed value.

b. Or, what is the probability that a male will mate *two and fewer times*.

b. Thus,
$$P_{[k < 2]} = P_{[k=0]} + P_{[k=1]} + P_{[k=2]}$$

$$So_{3}$$

$$P_{[k=0]} = \frac{5!}{0!5!} (1/6)^{0} (5/6)^{5} = .40$$

$$P_{[k=1]} = \frac{5!}{1!4!} (1/6)^{1} (5/6)^{4} = .40$$

$$P_{[k=2]} = \frac{5!}{2!3!} (1/6)^{2} (5/6)^{3} = .16$$

And,

 $P[k \le 2] = .96.$ Thus, the chances that one male will mate *two* or *fewer times* = .96.

Thus, probability of mating *more than 2 times* is:

1 -
$$P_{[k \le 2]} = .04$$

This is unlikely to occur by chance alone with p = 0.05.

Binomial Test, Continued

Small samples (N < 35)

1. S&C present a table in the back of the book that calculates the probabilities for various values of *N* and *k* if Ho: p = 1/2.

N	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
5	031	188	500	812	969	+			_					-	-	-
6	016	109	344	656	891	984	1									
7	008	062	227	500	773	938	992	+								
8	004	035	145	363	637	855	965	996	1							
9	002	020	090	254	500	746	910	980	998	+						
10	001	011	055	172	377	623	828	945	989	990	+					
11	10000	006	033	113	274	500	726	887	967	994	t	t				
12		003	019	073	194	387	613	806	927	981	997	÷	t			
13		002	011	046	133	291	500	709	867	954	989	998	÷	+		
14		001	006	029	090	212	395	605	788	910	971	994	999	÷.	+	
15			004	018	059	151	304	500	696	849	941	982	996	t	÷	
16			002	011	038	105	227	402	598	773	895	962	989	998	÷	÷
17			001	006	025	072	166	315	500	685	834	928	975	994	999	÷
18			001	004	015	048	119	240	407	593	760	881	952	985	996	99
19				002	010	032	084	180	324	500	676	820	916	968	990	99
20				001	006	021	058	132	252	412	588	748	868	942	979	99
21				001	004	013	039	095	192	332	500	668	808	905	961	98
22					002	008	026	067	143	262	416	584	738	857	933	97
23	1				001	005	017	047	105	202	339	500	661	798	895	95
24	1				001	003	011	032	076	154	271	419	581	729	846	92
25				+		002	007	022	054	115	212	345	500	655	788	88

Binomial Test: Example

1. For N = 10 and k = 3, one-tailed probability is .172.

Large samples (N > 35)

 As *N* increases, the binomial distribution approaches a normal distribution.
 a. It is then possible to use values of *p*, *q* and *N* to estimate *z*,
 A parameter that estimates the probability of occurrence of observed value, *x*, based on a binomial distribution.

The Equation Is:

$$z = \frac{(x - \mu_x)}{\sigma_x}$$
Which is equivalent to,

$$= \frac{x - Np}{(Npq)^{1/2}}$$
Look up the value of z on table of normal distribution (Appendix A in S&C).

column go second dec	en various smai place	t. Thus,	of 2 to o for exam	e decim pia, the	ul place one-tai	ed y of a	2.11	r : s -	It is p	s to the - 4562	So the
•	.00	.41	.02	.03	.04	.05	.06	.07	.08	.09	
.0.1.9.9.4	.5000 .4602 .4207 .3821 .3446	4960 4562 4168 3783 3409	4920 4522 4129 1745 1372	4550 4453 9790 3707 3336	4540 4443 4052 3669 3300	4801 4904 4013 3432 3254	4761 4364 3974 3594 3228	4771 4025 3606 3557 3192	4681 4286 3897 3520 3154	.4541 .4247 3839 3453 3121	probability that
a a ta ta	.3085 .2743 .2420 .2119 .1841	.3050 2709 2389 2090 1514	3015 3676 3358 2061 1788	2981 2643 2327 2033 1762	2946 2611 2296 2005 1736	2012 2578 2256 1977 1711	2546 2234 1949 1685	2943 2514 7206 1922 1660	2810 2483 2177 1894 1635	2776 3451 2148 1867 1611	of $z = 1.65$ cou
1.0	.1547 .1357 .1151 .0968 .0808	.1542 .1335 .1131 .0051 .0790	1539 1314 1112 0934 0778	1515 1292 1093 0918 0764	1492 1271 1075 0901 .0749	.1469 .1251 .1056 .0885 .0735	.1446 .1230 .1038 .0569 .0721	1423 1210 1020 0533 0708	.1401 1190 1003 .0538 0594	1379 1170 0985 0823 .0681	have occurred l
	0668 0548 0446 0359 0287	.0655 .0537 .0436 .0331 .0281	0543 0525 0427 0544 0274	0630 0516 0418 0336 0268	0618 0505 0409 0029 0362	0401 0401 0022 0256	.0594 0485 .0392 0314 .0250	0582 0475 0384 0307 0244	0571 0455 0375 0301 0239	0059 0455 0067 00294 00293	0.0495
2.0 2.1 2.2 2.1 2.1	.0228 .0170 .0130 .0007 .0062	.0222 .0174 .0136 .0104 .0080	0217 0132 0002 0078	0212 0166 0129 0099 0075	0907 0125 0075 0075	0203 0158 0122 0094 0071	.0197 0154 0119 0091 0009	0192 0150 0116 0089 0066	0158 0146 0113 0057 0066	0183 0143 0110 0054 0064	0.0495.
25	.0062 .0047 .0035 .0026 .0019	.0045 .0045 .0034 .0025 .0018	0059 0044 0033 0024 0018	0057 0043 0033 0023 0021	0055 0041 0031 0023 0016	0054 0040 0030 0022 0016	0032 0039 0029 0021 0015	.0051 0038 .0028 .0021 .0015	.0048 0037 0027 0020 0014	0048 0036 0035 0019 0014	
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0005	.0013	0013	0013	0012	0011	0011	0011 0005	0010	0000	
14	.00023 .00016 .00011 .00007 .00005										
	00000										

Goodness of Fit Tests

1. Most people are familiar with goodness of fit tests (chi-square)

- a. Considers situations when researcher wants to see whether observed distribution of counts fits predicted frequency for various categories.
- b. X² equals the sum of all (squared deviations of observed values from expected)/ expected.

Chi Squared Test

$$x^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

1. Where, for k categories, O_i is the observed value of the i-th class, and E_i is the expected value of the i-th class.

Chi Squared Test

$$x^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

- 2. It is easy to see that small deviations from expected -> small X^2 .
- a. Significance is tested using a chi-squared distribution with df = k-1.

- 3. Expected values are determined by the hypothesis.
 - a. Most often simply equal expected frequencies across groups (N/k).
- b. This hypothesis is *intrinsic* to the data.

Expected Frequencies

- 2. Also can be determined by some *extrinsic* hypothesis.
 - a. Mendelian inheritance:
- 1. 75:25, as expected in monohybrid cross with dominance.
- 2. 9:3:3:1 as expected with dihybrid cross.

Example

Example									
Male type:	α	β	γ	Ν					
Expected:	33.3	33.3	33.3	100					
Observed:	82	4	14	100					
$X^{2} = [(82-33.3)^{2}]/33.3 + [(4-33.3)^{2}]/33.3 + [(14-33.3)^{2}]/33.3 = 108.1$									
df = 3-1 = 2;									
$X^{2}_{[0.05, 2]} = 5.99, P >> 0.001$									

Important assumptions:

- 1. If k = 2, smallest expected value should be > 5.
- 2. When df > 1 (i.e., k > 2), can't use the test if
 - a. > 20% of expected frequencies are < 5.

b. Any expected frequency is < 1.

This Is Important Because:

1. Distribution of values for X^2 test approximates the actual X^2 distribution only as expected frequencies become *large*.

- 2. Small cell values can be overcome by pooling cells.
 - 3. More on pooling later.

value of the i-th class, and E_i is the expected value of the i-th class.

Chi Squared Test

$$x^{2} = \sum_{i=1}^{k} \frac{(o_{i} - E_{i})^{2}}{E_{i}}$$
Expected values are determined by f

- 3. Expected values are determined by the hypothesis.
 - a. Most often simply equal expected frequencies across groups (N/k).
- b. This hypothesis is *intrinsic* to the data.

Expected Frequencies

- 2. Also can be determined by some *extrinsic* hypothesis.
 - a. Mendelian inheritance:
- 1. 75:25, as expected in monohybrid cross with dominance.
- 2. 9:3:3:1 as expected with dihybrid cross.

Example									
Male type:	α	β	γ	Ν					
Expected:	33.3	33.3	33.3	100					
Observed:	82	4	14	100					
$X^2 = [(82 - 33.3)^2 \\ 33$	$X^{2} = [(82-33.3)^{2}]/33.3 + [(4-33.3)^{2}]/33.3 + [(14-33.3)^{2}]/33.3 = 108.1$								
df = 3-1 = 2;									
$X^2_{[0.05, 2]} = 5.99, P >> 0.001$									

Important assumptions:

- 1. If k = 2, smallest expected value should be > 5.
- 2. When df > 1 (i.e., k > 2), can't use the test if
 - a. > 20% of expected frequencies are < 5.
 - b. Any expected frequency is < 1.

This Is Important Because:

1. Distribution of values for X^2 test approximates the actual X^2 distribution only as expected frequencies become *large*.

2. Small cell values can be overcome by pooling cells.

3. More on pooling later.

Goodness of Fit Tests

1. Most people are familiar with goodness of fit tests (chi-square)

a. Considers situations when researcher wants to see whether observed distribution of counts fits predicted frequency for various categories.

b. X² equals the sum of all (squared deviations of observed values from expected)/ expected.

G-tests

1. Another goodness of fit test.

a. Similar to chi-squared, except that logarithms are used.

b. Makes it computationally *simpler*, especially with complex designs.

- 2. Also, use of logarithms makes individual tests *additive*
- a. This permits *partitioning of heterogeneity* tests similar to what is possible with ANOVA.

Calculated As:

$$G = 2\sum_{i=1}^{a} f_i \ln\left(\frac{f_i}{\hat{f}_i}\right)$$

where: a = # of classes (k in other notation). f_i = observed number of counts in the i-th class. f_{i-hat} = expected number of counts in the i-th class; = $p_i(N)$ with (a - 1) degrees of freedom.

Previous Example

	Male type:	α	р	γ	IN			
	Expected:	33.3	33.3	33.3	100			
	Observed:	82	4	14	100			
	$G = 2\{ [82 \ln (82/33.3)] + [4 \ln (4/33.3)] + [14 \ln (14/33.3)] + [14 \ln (14/33.3)] \}$							
	$= 2\{73.9 - 8.5 - 12.1\}$							
= 106.5								
	$X^{2}_{[0.05, 2]} = 5.99, P >> 0.001$							

Note:

Note that the value of *G* is less than the value of Chi-squared; for this test this provides a more conservative test, because the sample size is relatively large.

Properties of G-tests

 Tend to generate higher probability of Type I error than X².
 a. i.e., *G* values are often higher than X²

b. Mainly with small sample sizes,

2. This can be remedied using *Williams' Correction*.

a. A method for making values of *G* more conservative.