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Lecture 4

Binomial Test

1. Also, we can test specific hypotheses

a. Whether the observed distribution
occurred by chance

a.H:P,=P,

2. Or if it deviates from this distribution
(i.e., could not have occurred by chance).

b.H;: P, #P,.

Example:
a. Suppose you are
M observing a lek of male
w11 sage grouse (N, = 6)
1.5 females will enter
the lek and mate.
2. You want to figure
{ out the probability that
%= a male will mate more
than 2 times.




Method:

1. Let £ = the sum of counts of one class (#
mated males) = 2.

2. Let N = total number of opportunities a
male has to mate (total # of mated males)
=5.

3. Let p = proportion of observations in
which x=1.

4. Let g = (1 — p) = proportion of
observations in which x=0.

Method:

5. For each mating, each males probability
of mating is:

/N,

males

=1/6=p
of not mating = (1 - p) =5/6 =gq.

6. The number of objects in k and in N-k is
given by the equation for a binomial
distribution:

The Binomial Equation

N
P[k] = PegM*
k
Where,
N N!

k KI(N-k)!




The Exact Probability

1. That one of the males will mate twice is:

N
Pl = A
k
5!
Py = — (1/6(5/6) =16
213!
However,

2. We are really interested in finding out the
degree to which this could occur by chance.

a. Thus, we need to find out the probability
of obtaining values as extreme

or more extreme as the observed value.

b. Or, what is the probability that a male will
mate two and fewer times.

b. Thus, Py = Py + Ppicyy + Py

So,

51
Prg= — (1/6)°(5/6)° = .40
015!

51
Puy= — (1/6)'(5/6) = .40
1141

51
Prey = — (1/6)X(5/6)° = .16
2131




And,

Plk <2]=.96.
Thus, the chances that one male will mate two
or fewer times = .96.

Thus, probability of mating more than 2
times is:

1-Pyey =04

This is unlikely to occur by chance alone with
p=0.05.

Binomial Test, Continued

Small samples (N < 35)

1. S&C present a table in the back of the book
that calculates the probabilities for various
values of N and k if Ho: p = 1/2.

Tasie D, Tamz or Prosasicrries AssoctaTes wime VALUES 4 Swats as
Omsenvep VALUES oF 2 1n Tan Bivowiar Tesr®
Given in the body of this table tailed probabilitios under iy for i
teat whea P = @ = §. To save space, decimal points are coitted in the p's,

‘_‘ 0 1 2 3 4 5 6 7T 8 8 10 11 12 13 4 15
5 031 168 500 812 080 1

[ 016 109 344 650 691 884§

7 008 062 237 500 773 638 002 |

8 004 005 145 363 837 855 0G5 096 |

@ 002 020 000 254 500 746 010 080 998 |

10 001 011 035 172 377 623 628 045 089 090 1

1 006 033 113 274 500 726 857 067 04 { f

12 003 010 073 104 367 GI3 BOG 027 061 907

13 002 011 046 133 291 500 T09 867 054 980 998 |

14 001 006 020 000 212 305 605 T8S D10 971 094 009 |

15 004 018 050 151 304 500 600 B40 941 052 906 t f ¢
16 002 011 038 105 227 402 588 773 895 062 089 008 { ¢
17 001 006 025 072 166 315 500 665 834 0I8 075 694 090 |
18 001 004 015 (48 119 240 407 503 760 551 952 083 96 069
19 002 010 032 084 180 324 500 676 B30 916 968 090 (98
0 001 006 021 068 132 252 412 585 748 88 042 079 0G4
21 001 004 DI3 030 005 102 332 500 868 508 W05 061 87
n 002 008 020 067 143 262 416 584 I8 857 033 074
n 001 005 017 (47 108 202 330 500 661 798 898 453
£ 001 003 011 032 076 154 271 419 581 729 848 024
25 - 007 007 02 034 115 212 345 500 655 TER BSS

L

® Adapted from Table IV, B, of Walker, Helen, and Lev, J. 1083, Stafistical
inferemce.  New York: Helt, p. 458, with the kind permission of the sutbors and
lisher.

11.0 or approzimtely 10,




Binomial Test: Example

1. For N =10 and k = 3, one-tailed probability
is .172.

Tasie D, Tamz or Prosasicrries AssoctaTes wime VALUES 4 Swats as
Omsenvep VALUES oF 2 1n Tan Bivowiar Tesr®

Given in the body of this table tailed probabilitios under iy for i
teat whea P = @ = §. To save space, decimal points are coitied in the p's,

T
?n\\‘ona:asu:sgmuumum
s | 031 185 500 812 0en ¢
6 | 018 109 344 656 691 884 1
7 | 008 082 227 500 773 S8 02 1
3 | 004 035 145 303 637 855 065 096 1
9 | 002 020 000 35+500 746 010 080 998 1
10 | oor onn oss fra]ar eas eos 04s om0 we0
i 006 003 TIT 274 500 726 887 067 004 | 1
12 003 019 073 104 367 €13 606 027 081 007 § f
13 002 011 046 133 291 500 T09 867 054 980 636 | 1
14 001 006 029 000 212 305 605 T88 910 671 094 909 | 1
18 004 018 050 151 304 500 606 54D 941 082 008 t f 4
16 002 011 038 105 227 402 538 773 B95 062 U0 998 f 1
17 001 006 025 072 166 315 500 685 834 003 075 994 060§
18 001 D04 015 (48 119 240 407 503 760 581 950 085 006 099
19 002 010 032 04 180 324 500 676 830 916 968 090 098
0 001 006 021 058 132 252 412 588 748 803 942 079 0G4
2 001 004 DI3 030 005 102 332 50 668 K08 005 061 087
2 002 008 026 067 143 262 416 584 738 857 033 074
2 001 005 017 047 105 202 330 500 661 798 835 983
2 001 063 011 032 076 154 271 419 581 729 548 924
25 | - 002 007 022 054 115 212 345 500 655 788 B85
* Adspted from Table IV, B, of Walker, Helen, and Lev, 4. 1983, "
and

inforence. New York: Holt, p. 458, with the kind permission of the natbors
publisher.

1 1.0 or spproximately 10,

Binomial Test: Example

a. Note that one-tailed test is used because you
are predicting in advance which of the
values will be smaller.

b. If a two tailed test is used, you double the

value of P.
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Large samples (N > 35)

1. As N increases, the binomial distribution
approaches a normal distribution.

a. It is then possible to use values of p, ¢ and
N to estimate z,

A parameter that estimates the probability of
occurrence of observed value, x,

based on a binomial distribution.

The Equation Is:

(x 71ux)
z =

o

P

Which is equivalent to,

x-Np

(Npg)'*

Look up the value of z on table of normal
distribution (Appendix A in S&C).

Tabled area

Argument = =




TABLE A Areas of the sormal curve

So, the
probability that a
chance is,
0.0495.

calculated value
of z=1.65 could

have occurred by
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TABLE &

25

05 6.25
12.5

0.5
0.5

0.5
0.5

2. For example:
0.5

Rule of Thumb

1. If Npg > 9 to use this technique.

25
50
100




Goodness of Fit Tests

1. Most people are familiar with goodness of fit
tests (chi-square)

a. Considers situations when researcher wants
to see whether observed distribution of counts
fits predicted frequency for various
categories.

b. X? equals the sum of all (squared deviations
of observed values from expected)/

expected.

Chi Squared Test

2
(0; - Ey)

k
X2 = Z
i=1 E

1. Where, for k categories, O, is the observed
value of the i-th class, and E; is the expected
value of the i-th class.

Chi Squared Test
2
2 zk (0; - E;)
i=1 E,

2. It is easy to see that small deviations from
expected -> small X2.
a. Significance is tested using a chi-squared
distribution with df = &-1.




Chi Squared Test

2
2 Zk (oi - Ei)

i=1 Ei

3. Expected values are determined by the
hypothesis.

a. Most often simply equal expected
frequencies across groups (N/k).

b. This hypothesis is intrinsic to the data.

Expected Frequencies

2. Also can be determined by some extrinsic
hypothesis.

a. Mendelian inheritance:

1. 75:25, as expected in monohybrid cross
with dominance.

2. 9:3:3:1 as expected with dihybrid cross.

Example

1. The frequency of male
morphs in P. sculpta




Example

Male type: a By N
Expected: 33.3 333333 100
Observed: 82 4 14 100

X2 =[(82-33.3)2)/33.3 + [(4-33.3)2)/33.3 + [(14-
33.3)2)/33.3 = 108.1

df=3-1=2;
X005, = 5.99, P>>0.001

Important assumptions:

1. If k=2, smallest expected value should
be > 5.

2. When df > 1 (i.e., k> 2), can't use the test if
a. >20% of expected frequencies are < 5.

b. Any expected frequency is < 1.

This Is Important Because:

1. Distribution of values for X? test
approximates the actual X? distribution only
as expected frequencies become large.

2. Small cell values can be overcome by pooling
cells.

3. More on pooling later.




Chi Squared Test

2
(0; - Ey)

k
X2 = Z
i=1 E

1. Where, for k categories, O; is the observed
value of the i-th class, and E; is the expected
value of the i-th class.

Chi Squared Test

2
k (0. - E;)
2 .S i i

1=1 Ei

2. It is easy to see that small deviations from
expected -> small X2,

a. Significance is tested using a chi-squared
distribution with df = &-1.

Chi Squared Test

2
(0; - Ey)

k
X2=z
i=

1 Ei

3. Expected values are determined by the
hypothesis.

a. Most often simply equal expected
frequencies across groups (N/k).

b. This hypothesis is intrinsic to the data.




Expected Frequencies

2. Also can be determined by some extrinsic
hypothesis.

a. Mendelian inheritance:

1. 75:25, as expected in monohybrid cross
with dominance.

2. 9:3:3:1 as expected with dihybrid cross.

Example

1. The frequency of male
morphs in P. sculpta

Example
Male type: a B v N
Expected: 33.3 33.3 333 100
Observed: 82 4 14 100

X2 = [(82-33.3)2]/33.3 + [(4-33.3)2)/33.3 + [(14-
33.3)2)/33.3 = 108.1

df=3-1=2;
X005.2)=5.99, P >>0.001




Important assumptions:

1. If k=2, smallest expected value should
be > 5.

2. When df > 1 (i.e., k> 2), can't use the test if
a. >20% of expected frequencies are < 5.

b. Any expected frequency is < 1.

This Is Important Because:

1. Distribution of values for X? test
approximates the actual X2 distribution only
as expected frequencies become large.

2. Small cell values can be overcome by pooling
cells.

3. More on pooling later.

Goodness of Fit Tests

1. Most people are familiar with goodness of fit
tests (chi-square)

a. Considers situations when researcher wants
to see whether observed distribution of counts
fits predicted frequency for various
categories.

b. X? equals the sum of all (squared deviations
of observed values from expected)/

expected.




G-tests

1. Another goodness of fit test.
a. Similar to chi-squared, except that logarithms
are used.
b. Makes it computationally simpler,
especially with complex designs.
2. Also, use of logarithms makes individual
tests additive
a. This permits partitioning of heterogeneity
tests similar to what is possible with
ANOVA.

Calculated As:

- fi
G:2 fl -
Efnﬁ

where: a = # of classes (k in other notation).
/; = observed number of counts in the i-th class.
Jinat = €xpected number of counts in the i-th
class; = p(N)
with (a — 1) degrees of freedom.

Previous Example

Male type: o B v N
Expected: 33.3 33.3 333 100
Observed: 82 4 14 100

G =2{[82 In (82/33.3)] + [4 In (4/33.3)] + [14
In (14/33.3)]}

=2{73.9-8.5-12.1}
=106.5
X005,21 = 5.99, P>>0.001




Note:

Note that the value of G is less than the value
of Chi-squared; for this test

this provides a more conservative test, because
the sample size is relatively large.

Properties of G-tests

1. Tend to generate higher probability of Type I
error than X2,

a. i.e., G values are often higher than X?
b. Mainly with small sample sizes,
2. This can be remedied using
Williams’ Correction.

a. A method for making values of G more
conservative.




