BIO 682
 Nonparametric Statistics Spring 2010

Steve Shuster

http://www4.nau.edu/shustercourses/BIO682/index.htm

Lecture 4

Binomial Test

1. Also, we can test specific hypotheses
a. Whether the observed distribution
occurred by chance
a. $\mathrm{H}_{\mathrm{o}}: \mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{o}}$.
2. Or if it deviates from this distribution (i.e., could not have occurred by chance).
b. $\mathrm{H}_{1}: \mathrm{P}_{\mathrm{i}} \neq \mathrm{P}_{\mathrm{o}}$.

Example:

a. Suppose you are observing a lek of male sage grouse $\left(N_{\text {males }}=6\right)$ 1. 5 females will enter the lek and mate.
2. You want to figure out the probability that a male will mate more than 2 times.

Method:

1. Let $k=$ the sum of counts of one class (\# mated males) $=2$.
2. Let $N=$ total number of opportunities a male has to mate (total \# of mated males) $=5$.
3. Let $p=$ proportion of observations in which $\mathrm{x}=1$.
4. Let $q=(1-p)=$ proportion of observations in which $\mathrm{x}=0$.

Method:

5. For each mating, each males probability of mating is:

$$
1 / N_{\text {males }}=1 / 6=p
$$

of not mating $=(1-p)=5 / 6=q$.
6. The number of objects in k and in $N-k$ is \qquad given by the equation for a binomial
distribution: \qquad
\qquad

The Binomial Equation

\qquad
$\mathrm{P}[k]=\binom{N}{k} p^{\mathrm{k}} q^{N-k}$ \qquad
\qquad
Where,

$$
\binom{N}{k}=\frac{N!}{k!(N-k)!}
$$

\qquad
\qquad
\qquad
\qquad

The Exact Probability

1. That one of the males will mate twice is:

$$
\begin{aligned}
& \mathrm{P}_{[\mathrm{x}=2]}=\binom{N}{k} p^{\mathrm{k}} q^{N-k} \\
& 5! \\
& \mathrm{P}_{[\mathrm{x}=2]}=\frac{-(1 / 6)^{2}(5 / 6)^{3}=.16}{2!3!}
\end{aligned}
$$

However,

2. We are really interested in finding out the degree to which this could occur by chance.
a. Thus, we need to find out the probability of obtaining values as extreme or more extreme as the observed value.
b. Or, what is the probability that a male will mate two and fewer times.
b. Thus, $\mathrm{P}_{[\mathrm{k}<2]}=\mathrm{P}_{[\mathrm{k}=0]}+\mathrm{P}_{[\mathrm{k}=1]}+\mathrm{P}_{[\mathrm{k}=2]}$

$$
\begin{gathered}
\text { So, } \\
\mathrm{P}_{[\mathrm{k}=0]}=\frac{5!}{0!5!}(1 / 6)^{0}(5 / 6)^{5}=.40 \\
\mathrm{P}_{[\mathrm{k}=1]}=\frac{5!}{1!4!}(1 / 6)^{1}(5 / 6)^{4}=.40 \\
\mathrm{P}_{[\mathrm{k}=2]}=\frac{5!}{2!3!}(1 / 6)^{2}(5 / 6)^{3}=.16
\end{gathered}
$$

And,

$\mathrm{P}[\mathrm{k} \leq 2]=.96$.
Thus, the chances that one male will mate two or fewer times $=.96$.

Thus, probability of mating more than 2 times is:

$$
1-\mathrm{P}_{[\mathrm{k} \leq 2]}=.04
$$

This is unlikely to occur by chance alone with

$$
\mathrm{p}=0.05
$$

Binomial Test, Continued

$$
\text { Small samples }(\mathrm{N}<35)
$$

1. S\&C present a table in the back of the book that calculates the probabilities for various \qquad values of N and k if Ho: $p=1 / 2$.

[^0]\qquad
\qquad

Binomial Test: Example

1. For $\mathrm{N}=10$ and $\mathrm{k}=3$, one-tailed probability is .172 .

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Binomial Test: Example

a. Note that one-tailed test is used because you are predicting in advance which of the values will be smaller.
b. If a two tailed test is used, you double the value of P .

Large samples ($N>35$)

1. As N increases, the binomial distribution approaches a normal distribution.
a. It is then possible to use values of p, q and N to estimate z,

A parameter that estimates the probability of occurrence of observed value, x, based on a binomial distribution.

The Equation Is:

\qquad

$$
z=\frac{\left(x-\mu_{x}\right)}{\sigma_{x}}
$$

Which is equivalent to,

$$
=\frac{x-N p}{(N p q)^{1 / 2}}
$$

\qquad
Look up the value of z on table of normal \qquad distribution (Appendix A in S\&C).

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rule of Thumb:

1. If $N p q>9$ to use this technique.
2. For example: \qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{array}{llll}
100 & 0.5 & 0.5 & 25
\end{array}
$$

\qquad

Goodness of Fit Tests

1. Most people are familiar with goodness of fit tests (chi-square)
a. Considers situations when researcher wants to see whether observed distribution of counts
fits predicted frequency for various categories.
b. X^{2} equals the sum of all (squared deviations of observed values from expected)/ expected.

$$
\begin{gathered}
\text { Chi Squared Test } \\
x^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
\end{gathered}
$$

1. Where, for k categories, O_{i} is the observed value of the i -th class, and E_{i} is the expected value of the i-th class.

Chi Squared Test

\qquad

$$
x^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

2. It is easy to see that small deviations from expected -> small X^{2}.
a. Significance is tested using a chi-squared distribution with $\mathrm{df}=k-1$.

Chi Squared Test

$$
x^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

3. Expected values are determined by the hypothesis.
a. Most often simply equal expected frequencies across groups (N / k).
b. This hypothesis is intrinsic to the data.

Expected Frequencies

2. Also can be determined by some extrinsic hypothesis.
a. Mendelian inheritance:
3. $75: 25$, as expected in monohybrid cross with dominance.
4. $9: 3: 3: 1$ as expected with dihybrid cross.

Example			
Male type:		$\beta \quad \gamma$	N
Expected:	33.3	33.333 .3	100
Observed:		$4 \quad 14$	100
$\begin{gathered} X^{2}=\left[(82-33.3)^{2}\right] / 33.3+\left[(4-33.3)^{2}\right] / 33.3+[(14- \\ \left.33.3)^{2}\right] / 33.3=108.1 \end{gathered}$			
$\mathrm{df}=3-1=2 ;$			
$X^{2}{ }_{[0.05,2]}=5.99, \mathrm{P} \gg 0.001$			

Important assumptions:

1. If $k=2$, smallest expected value should

$$
\text { be }>5 \text {. }
$$

2. When $\mathrm{df}>1$ (i.e., $k>2$), can't use the test if \qquad
a. $>20 \%$ of expected frequencies are <5.
b. Any expected frequency is <1.

This Is Important Because:

1. Distribution of values for X^{2} test approximates the actual X^{2} distribution only as expected frequencies become large.
2. Small cell values can be overcome by pooling cells.
3. More on pooling later.

Chi Squared Test

$$
x^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

1. Where, for k categories, O_{i} is the observed value of the i-th class, and E_{i} is the expected value of the i-th class.

$$
\begin{gathered}
\text { Chi Squared Test } \\
x^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
\end{gathered}
$$

2. It is easy to see that small deviations from expected -> small X^{2}.
a. Significance is tested using a chi-squared distribution with $\mathrm{df}=k-1$.
\qquad

Chi Squared Test

\qquad

$$
x^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

3. Expected values are determined by the hypothesis.
a. Most often simply equal expected frequencies across groups (N / k).
b. This hypothesis is intrinsic to the data.

Expected Frequencies

2. Also can be determined by some extrinsic hypothesis.
a. Mendelian inheritance:
3. $75: 25$, as expected in monohybrid cross with dominance.
4. 9:3:3:1 as expected with dihybrid cross.

Example			
Male type:		$\beta \quad \gamma$	N
Expected:		33.333 .3	100
Observed:		$4 \quad 14$	100
$\begin{gathered} X^{2}=\left[(82-33.3)^{2}\right] / 33.3+\left[(4-33.3)^{2}\right] / 33.3+[(14- \\ \left.33.3)^{2}\right] / 33.3=108.1 \end{gathered}$			
$\mathrm{df}=3-1=2 ;$			
$X^{2}{ }_{[0.05,2]}=5.99, \mathrm{P} \gg 0.001$			

Important assumptions:

1. If $k=2$, smallest expected value should

$$
\text { be }>5 \text {. }
$$

2. When $\mathrm{df}>1$ (i.e., $k>2$), can't use the test if
a. $>20 \%$ of expected frequencies are <5.
b. Any expected frequency is <1.

This Is Important Because:

\qquad

1. Distribution of values for X^{2} test approximates the actual X^{2} distribution only as expected frequencies become large.
2. Small cell values can be overcome by pooling cells.
3. More on pooling later.

Goodness of Fit Tests

\qquad

1. Most people are familiar with goodness of fit \qquad tests (chi-square)
a. Considers situations when researcher wants to see whether observed distribution of counts
fits predicted frequency for various categories.
b. X^{2} equals the sum of all (squared deviations of observed values from expected)/ expected.

G-tests

1. Another goodness of fit test.
a. Similar to chi-squared, except that logarithms are used.
b. Makes it computationally simpler, especially with complex designs.
2. Also, use of logarithms makes individual tests additive
a. This permits partitioning of heterogeneity tests similar to what is possible with ANOVA.

> Calculated As:
> $G=2 \sum^{a} f_{i} \ln \left(\frac{f_{i}}{\widehat{f}_{i}}\right)$
where: $a=$ \# of classes (k in other notation). $f_{i}=$ observed number of counts in the i-th class.
$f_{i \text {-hat }}=$ expected number of counts in the i-th

$$
\text { class } ;=p_{i}(\mathrm{~N})
$$

with $(a-1)$ degrees of freedom.

Previous Example

Male type: $\quad \begin{array}{ccccc} & \alpha & \beta & \gamma & \mathrm{N}\end{array}$
Expected: $\quad \begin{array}{lllll}33.3 & 33.3 & 33.3 & 100\end{array}$
$\begin{array}{lllll}\text { Observed: } & 82 & 4 & 14 & 100\end{array}$

$$
\begin{gathered}
G=2\{[82 \ln (82 / 33.3)]+[4 \ln (4 / 33.3)]+[14 \\
\ln (14 / 33.3)]\} \\
=2\{73.9-8.5-12.1\} \\
=106.5 \\
X_{[0.05,2]}^{2}=5.99, \mathrm{P} \gg 0.001
\end{gathered}
$$

Note:

Note that the value of G is less than the value of Chi-squared; for this test this provides a more conservative test, because the sample size is relatively large.

Properties of G-tests

1. Tend to generate higher probability of Type I error than X^{2}.
\qquad
a. i.e., G values are often higher than X^{2}
b. Mainly with small sample sizes,
2. This can be remedied using

Williams' Correction.
a. A method for making values of G more conservative.

[^0]:
 Given in P,
 teat whea $P=Q=i$. To tave are one taialed probabilities under H, for the binal pointa are omitted in the leat when $P=Q-i$. To save space, decimal pointa are omitted in the p 's.
 $\begin{array}{llllll}031 & 188 & 800 & 812 & 969 & \dagger \\ 016 & 109 & 344 & 656 & 891 & 984\end{array}$

 | 006 | 03 | 113 | 274 |
 | :--- | :--- | :--- | :--- |
 | 003 | 019 | 073 | 194 |

 $\begin{array}{llllllllllll}01 & 003 & 011 & 032 & 076 & 154 & 271 & 419 & 581 & 729 & 846 & 924 \\ 002 & 007 & 022 & 054 & 115 & 212 & 345 & 500 & 655 & 788 & 885\end{array}$
 $\frac{25}{\text { * Adapted from Table IV, B, of Walker, Helen, and Lev, J. } 1953 \text {. Seatistical }}$
 inference. New York: Holt, p. 458, with the kind permiation of the autbors and
 $\dagger 1.0$ or approximately 1.0 .

