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Lecture 5

Williams’ Correction
a. Divide G value by q (see S&R p. 699)

q = 1 + (a2 - 1)/6nv

(where v = a - 1).
b. In the previous example,

q = 1 + (9 - 1)/1200 = 1.007

3. Gadj = 106.5/1.007 = 105.75

Williams’ Correction: Result
1. Note that the adjusted value is smaller.

a. i.e., more likely to accept Ho (i.e., is more 
conservative).

2. Williams correction applies only for 
situations in which n < 200.
a. This is most of the time.
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Williams’ Correction: Result
3. The reason is that with large sample sizes X2

approaches normality.
c. Williams’ Correction doesn't change G

much (note that n is in denominator)

q = 1 + (a2 - 1)/6nv

When To Use G-tests
1. Usually determined by sample size and the 

magnitude of frequencies.
a. Like X2, G-tests can't be used when smallest 

expected fi is  < 5.

b. But there are some exceptions.

Advantages of G-tests
1. When smallest expected fi > 10 (e.g., fi-hat), 

G-tests give a good approximation of exact 
multinomial probability.

a. It is as if the probability of observed counts 
among classes was calculated exactly.

2. G-tests have similar interpretations to X2

except they have the advantage of additivity
(more on this with heterogeneity tests).
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Further Advantages of G-tests
1. For a > 5 and fi-hat > 3, G is better than X2

a. where a = number of classes.
b. fi-hat = expected frequency of smallest cell.

c. This is true because under these conditions 
G-tests simultaneously minimize Type I and 

Type II errors better than X2.

When Assumptions Are 
Violated

1. Exact tests are better then G-tests when:
1. a > 5 and fi-hat < 3, or when  

2. a < 5 and fi-hat < 5.

2. This can be a problem if one wishes to do 
heterogeneity tests.

a. Thus, small fi-hat can be avoided by lumping 
classes.
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Calculating G

Williams’ Correction

The Result of Pooling
1. Pooling creates larger fi-hat; this can help.

2. But, may lose information
a. The decision is up to the experimenter.

2. For small fi-hat, G may too often reject Ho
a. This is without a correction.

b. Different authors prefer different tests.
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Correction for Continuity
1. This is done by adding and subtracting .5 to 

observed values (fi ± .5) to decrease value of 
G or X2.

2. S&R consider this procedure likely to make 
tests too conservative.

3. They recommend Williams correction for n < 
25.

Degrees of Freedom
1. Usually is (a - 1) for goodness of fit.

a. This is used when hypothesis is extrinsic to 
data

1. e.g., if there is some external hypothesis 
against which the data are to be tested.

2. Example: genetic data; chance.

Degrees of Freedom
2. when parameters are estimated from the data 

themselves, the hypothesis is intrinsic.
a. Rule of thumb: (a-1) – (the number of 

parameters estimated).
b. The number of additional estimated 

parameters depends on the distribution used to 
test the hypothesis.
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Degrees of Freedom

Heterogeneity Tests
1. Test is useful when replicated tests are 

performed:
a. e.g., Genetic analyses.

b. Replicated analyses of any kind.
2. Most meaningful with G-test due to 

additivity of G-values.
a. X2 test is not appropriate.

b. Neither are exact probability tests.
3. S&R go into detail to demonstrate 

calculation of GH
a. This is unnecessary if individual Gi values 

are calculated.

Recall That,

where: a = # of classes (k in other notation).
fi = observed number of counts in the i-th class.

fi-hat = expected number of counts in the i-th
class; = pi(N)

with (a – 1) degrees of freedom.
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Example: 
Replicated tests of a genetic hypothesis: 

3:1 phenotype ratio.
a. p1 = .75; f1-hat = p1(100) = 75
b. p2 = .25; f2-hat = p2(100) = 25

Step 1 
Compare observed and expected frequencies to 

calculate individual values of Gi.
a. p1 = .75; f1-hat = p1(100) = 75
b. p2 = .25; f2-hat = p2(100) = 25

Sum Gi to get GT
GT = 3.38, df = b(a-1); b = # tests; a = # classes per test;       

= 3(2-1) = 3
X2

[.05,3] = 7.82, ns

Step 2
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Add fi for all classes to calculate GP;
GP = 2[250 ln (250/236.5) + 65 ln (65/78.7)] 

= 1.65, df = (a-1) = 1
X2[.05] = 1.84, ns

Step 3

Calculate GH as,
GT - GP = GH because GT = GP + GH

Step 4

GH = GT - GP = 3.38 - 1.65= 1.72
df = (a-1)(b-1) = (1)(2) = 2

X2
[.05,2] = 5.99, ns

Step 4
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Gi : all non-significant; GT = 3.38: non-significant; GHGP = 1.65: non-significant, GH = 1.72: non-significant.
There is no evidence of heterogeneity in any aspect 

of this test.

Step 5: Interpretation

Another Example: A

1. Non-significant Gi and GH

2. Significant GT and GP

3. Indicates that deviations in Gi are individually not large enough
to lead to significance.

a. Summed, however, there is a significant bias.
b. Also they are consistent in their direction of bias.

c. There may be another, more appropriate hypothesis.

Another Example: B

1. Non-significant Gi, GP.

2. Significant GT, GH

3. Indicates that deviations in Gi are not different from 
Ho, nor is pooled sample.

a.  But significant GH and inspection show that deviations
exist and simply cancel in calculation of GP.

b. GT is equivalent to Ex. A, but conclusion is different.
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Another Example: C

1. Significant nearly everything.
a. Two Gi are significant, two are not.

b. Despite trend toward females, the samples are
heterogeneous

Another Example: D

1. Non-significant GT, GP, all Gi except one is non-
significant (but note their magnitudes).

2. However, there is still significant GH

3. Despite non-signicant values in most individual tests, 
the single significant Gi is enough to make the entire 

set of tests heterogeneous.

Other Notes on GH Tests
1. Since Williams’ correction changes the 

distribution of G-values,
a. These corrections are not appropriate in 

heterogeneity tests.

2. Occasionally, GT is significant, but none of 
the other indices are.

a. This indicates a generally poor fit of the 
data.

b. Suggests another hypothesis (or hypotheses) 
might be better. 
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More Notes
3. Pin-pointing the source of the heterogeneity:

a. It is possible to use a post-hoc test (STP; 
simultaneous test procedure).

4. This involves calculating GT and adding Gi
values stepwise (low to high) until

significance is reached.
a. Procedure is outlined in S&R.

Comparisons of Distributions
1. Break observed and expected distributions into 
intervals and compare intervals using X2 or G test.

a. Sometimes it is possible to make approximations 
depending on shape of the distribution.

b. Contagious distributions are mostly contained in 
the first few classes.

c. It is possible to ignore other classes because their 
combined contribution to X2 is small.

2. Generally best to use Kolomogorov-Smirnov test if 
entire distribution is tested.

Tests of 2 Independent Samples

1. 2x2 tests
a. These test the hypothesis that two factors 

have nothing to do with each other.

1. Thus they are designed to test 
independence

2. If Ho is rejected, it indicates that two 
samples do influence each other
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2x2 Tests: Examples
1. The proportion of hybrid or non-hybrid plants 

attacked by insect A (presence or absence?).
2. Response of operated and non-operated frogs 

to prey (strike or non-strike?).
3. Occurrence of electromorphs at two loci 

(segregation or linkage?).

4. In all cases: 
a. Pay attention to the marginal totals.
b. These let you know which test to use.

2x2 Tests: X2 test 
1. The older method, often replaced by G-test, 

but still useful for figuring out expected 
frequencies:

a. Standard Method:
1. Set up 2x2 table

a. Say, 100 randomly selected plants 
(Wt and Hy), sampled for the presence or 

absence of insect A.

2x2 Tests: X2 test
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2x2 Tests: X2 test

Calculating 
X2
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2x2 Tests: X2 test
1. Clearly, This is a bit cumbersome

2. Also, when using X2, it is necessary to 
apply Yates’ Correction for continuity.

a. Reduction or augmentation of observed 
values by .5 depending on whether they are 

larger than or smaller than observed.

+
- +

-

2x2 Tests: X2 test
1. Clearly, This is really cumbersome

2. S&R consider this likely to lead to an 
unnecessarily conservative result.


