BIO 682 Nonparametric Statistics Spring 2010

Steve Shuster

http://www4.nau.edu/shustercourses/BIO682/index.htm

Lecture 5

Williams' Correction

a. Divide G value by q (see S&R p. 699)

 $q = 1 + (a^2 - 1)/6nv$

(where v = a - 1). b. In the previous example,

q = 1 + (9 - 1)/1200 = 1.007

3. $G_{\rm adi} = 106.5/1.007 = 105.75$

Williams' Correction: Result

1. Note that the adjusted value is *smaller*.

a. i.e., more likely to accept Ho (i.e., is more conservative).

2. Williams correction applies only for situations in which n < 200.

a. This is most of the time.

Williams' Correction: Result

- 3. The reason is that with large sample sizes X^2 approaches normality.
 - c. Williams' Correction doesn't change *G* much (note that *n* is in denominator)

$$q = 1 + (a^2 - 1)/6nv$$

When To Use G-tests

1. Usually determined by sample size and the magnitude of frequencies.

a. Like X^2 , *G*-tests can't be used when smallest expected f_i is < 5.

b. But there are some exceptions.

Advantages of G-tests

- 1. When smallest *expected* $f_i > 10$ (e.g., f_{i-hat}), *G*-tests give a good approximation of exact multinomial probability.
- a. It is as if the probability of observed counts among classes was calculated *exactly*.
 - 2. *G*-tests have similar interpretations to X^2 except they have the advantage of additivity (more on this with heterogeneity tests).

Further Advantages of G-tests

- 1. For a > 5 and $f_{i-hat} > 3$, *G* is *better* than X^2 a. where a = number of classes.
- b. f_{i-hat} = expected frequency of smallest cell.
- c. This is true because under these conditions *G*-tests simultaneously minimize Type I and Type II errors better than X^{2} .

When Assumptions Are Violated

1. Exact tests are better then *G*-tests when:

- 1. a > 5 and $f_{i-hat} < 3$, or when 2. a < 5 and $f_{i-hat} < 5$.
- 2. This can be a problem if one wishes to do heterogeneity tests.
- a. Thus, small f_{i-hat} can be avoided by lumping classes.

(1)	(2)	(3)	(4)	(5)
33	99 92	f	J	Deviation from expectation
12	0	7)	2.34727)	
11	1	45 52	26.08246	+
10	2	181	132.83570	+
9	3	478	410.01256	+
8	4	829	854.24665	-
7	5	1112	1265.63031	_
6	6	1343	1367.27936	-
5	7	1033	1085.21070	-
4	8	670	628.05501	+
3	9	286	258.47513	+
2	10	104	71.80317	+
1	11	24]	12.08884) 12.02140	
0	12	3521	0.93284	+
		6115 = n	6115,00000	

The Result of Pooling

- Pooling creates larger *f_{i-hat}*; this can help.
 But, may lose information
 - a. The decision is up to the experimenter.
- For small f_{i-hat}, G may too often reject Ho
 a. This is without a correction.
 - b. Different authors prefer different tests.

Correction for Continuity

- 1. This is done by adding and subtracting .5 to observed values ($f_i \pm .5$) to decrease value of G or X^2 .
- 2. S&R consider this procedure likely to make tests too conservative.
- 3. They recommend Williams correction for n < 25.

Degrees of Freedom

1. Usually is (a - 1) for goodness of fit.

a. This is used when hypothesis is *extrinsic* to data

1. e.g., if there is some *external* hypothesis against which the data are to be tested.

2. Example: genetic data; chance.

Degrees of Freedom

2. when parameters are estimated from the data themselves, the hypothesis is *intrinsic*.

a. Rule of thumb: (*a*-1) – (the number of parameters estimated).

b. The number of additional estimated parameters depends on the distribution used to test the hypothesis.

Degrees of Freedom

Distribution	Parameters estimated from sample	df
Binomial	p	a - 2
Normal	μ, σ	a - 3
Poisson	μ	a - 2

When the parameters for such distributions are estimated from hypotheses *extrinsic* to the sampled data, the degrees of freedom are uniformly a - 1.

Heterogeneity Tests

Test is useful when replicated tests are performed:

 a. e.g., Genetic analyses.
 b. Replicated analyses of any kind.

 Most meaningful with *G*-test due to additivity of *G*-values.

 a. X² test is not appropriate.
 b. Neither are exact probability tests.
 S&R go into detail to demonstrate calculation of G_H

 a. This is unnecessary if individual G_i values are calculated.

Recall That,

$$G = 2\sum_{i=1}^{a} f_i \ln\left(\frac{f_i}{\hat{f}_i}\right)$$

where: a = # of classes (k in other notation). f_i = observed number of counts in the i-th class. f_{i-hat} = expected number of counts in the i-th class; = $p_i(N)$ with (a - 1) degrees of freedom.

F	Replicate	Ex ed tests 3:1 ph	of a green	ple: genetic pe ratio	hypot o.	hesis:	
		a. $p_1 = .75$ b. $p_2 = .25$	f_{1-hat} f_{2-hat}	$= p_1(100)$ $= p_2(100)$	= 75 = 25		
Case	fl	f'1	f_2	f' ₂	N	Gi	Ρ
1	75	75	25	25	100	0.00	ns
2	81	73.5	17	24.5	98	1.66	ns
3	94	87.8	23	28.2	117	1.72	ns
Σ	250	236.3	65	78.7	315	3.38	

Con	npare ob calc	served ulate in	and e dividi	xpected ual valu	l frequ ies of	iencies G_{i} .	to
a. p ₁ b. p ₂	= .75; f_{1-hat} = .25; f_{2-hat}	$= p_1(100)$ $= p_2(100)$	= 75 = 25	G = 2	$\sum_{i=1}^{a} f_i \ln\left(\frac{1}{2}\right)$	$\left(\frac{f_i}{f_i}\right)$	
Case	f1	f'1	f2	f'2	N	Gi	Ρ
1	75	75	25	25	100	0.00	ns
2	81	73.5	17	24.5	98	1.66	ns
3	94	87.8	23	28.2	117	1.72	ns
Σ	250	236.3	65	78.7	315	3.38	

1							
	75	75	25	25	100	0.00	ns
2	81	73.5	17	24.5	98	1.66	ns
3	94	87.8	23	28.2	117	1.72	ns
Σ	250	236.3	65	78.7	315	3.38	

			Step	b 3			
Case	f1	f'1	f_2	f'2	N	Gi	Ρ
1	75	75	25	25	100	0.00	ns
2	81	73.5	17	24.5	98	1.66	ns
3	94	87.8	23	28.2	117	1.72	ns
Σ	250	236.3	65	78.7	315	3.38	
	Add $G_{\rm P} = 2[2$	$f_i \text{ for all}$ 250 ln (2 = 1.6 $X^2[$	classe 50/236 5, df = .05] =	es to calc (5.5) + 65 = (a-1) = 1.84, ns	ulate G ln (65/ 1	7 _P ; 78.7)]	

Case	f ₁	f'1	f2	f'2	N	Gi	Ρ
1	75	75	25	25	100	0.00	ns
2	81	73.5	17	24.5	98	1.66	ns
3	94	87.8	23	28.2	117	1.72	ns
Σ	250	236.3	65	78.7	315	3.38	

Case	fl	f'1	f2	f'2	Ν	Gi	Ρ
1	75	75	25	25	100	0.00	ns
2	81	73.5	17	24.5	98	1.66	ns
3	94	87.8	23	28.2	117	1.72	ns
Σ	250	236.3	65	78.7	315	3.38	

Case	f1	f'1	f2	f'2	N	Gi	Ρ
1	75	75	25	25	100	0.00	ns
2	81	73.5	17	24.5	98	1.66	ns
3	94	87.8	23	28.2	117	1.72	ns
Σ	250	236.3	65	78.7	315	3.38	

There is no evidence of heterogeneity in any aspect of this test.

	Progenies	Ŷ	ೆ	n		df	G
	1	59	41	100		1	3.25773 ns
	2	58	42	100		1	2.57104 ns
A	3	57	42	99		1	2.28150 ns
	4	58	40	98		1	3.32497 ns
					Total	4	11.43523 P < 0.023
	Σ	232	165	397	Pooled	1	11.36160 P < 0.00
	0.000				Heterogeneity	3	0.07363 ns
. In	dicates th	at dev	2. S viatio to	ignifi ns in lead t	cant $G_{\rm T}$ and $G_{\rm i}$ are individed of significance	G _P Iuall <u>i</u> e.	y not large eno
			•••				

	10000					
1	59	41	100		1	3.25773 ns
2	42	58	100		1	2.57104 ns
3	57	42	99		1	2.28150 ns
4	40	58	98		1	3.32497 ns
				Total	4	11.43523 P < 0.023
Σ	198	199	397	Pooled	1	0.00252 ns
-				Heterogeneity	3	11.43272 P < 0.01
		2	. Signi	ficant $G_{\rm T}$, $G_{\rm H}$		
3.1	ndicates	that d	eviatio	ons in G_i are not	diffe	rent from
		Ho	, nor is	pooled sample		
a. B	ut signif	ficant ($G_{\rm H}$ and	inspection show	w that	deviations
	exist a	and sir	nply ca	ancel in calcula	tion o	$f G_{p}$
						• •

heterogeneous

	1	52	48	100		1	0.16004 ns
	2	36	64	100		1	7.94580 P < 0.005
D	3	52	47	99		1	0.25263 ns
	4	52	46	98		1	0.36758 ns
					Total	4	8.72605 ns
	Σ.	192	205	397	Pooled	1	0.42577 ns
	2				Heterogeneity	3	8.30028 P < 0.05
	1. No	n-sign signi	ifican ficant	t G _T , (but 1	$G_{\rm P}$, all $G_{\rm i}$ exc note their mag	ept o gnitu	ne is non- des).
		1 II	110110	thore	is still signi	ficant	$G_{}$
		2. HO	wever	, mon	s is suit signi	iouin	ι O _H

- a. These corrections are *not appropriate* in heterogeneity tests.
- 2. Occasionally, $G_{\rm T}$ is significant, but none of the other indices are.
 - a. This indicates a generally poor fit of the data.
- b. Suggests another hypothesis (or hypotheses) might be better.

More Notes

- Pin-pointing the source of the heterogeneity:
 a. It is possible to use a post-hoc test (STP; simultaneous test procedure).
- 4. This involves calculating G_T and adding G_i values stepwise (low to high) until significance is reached.
 a. Procedure is outlined in S&R.

Comparisons of Distributions

1. Break observed and expected distributions into intervals and compare intervals using X^2 or *G* test.

- a. Sometimes it is possible to make approximations depending on *shape of the distribution*.
- b. Contagious distributions are mostly contained in the first few classes.
- c. It is possible to ignore other classes because their combined contribution to X^2 is small.
- 2. Generally best to use Kolomogorov-Smirnov test if entire distribution is tested.

Tests of 2 Independent Samples

1. 2x2 tests

- a. These test the hypothesis that two factors have nothing to do with each other.
 - 1. Thus they are designed to test *independence*
 - 2. If H_0 is *rejected*, it indicates that two samples *do influence* each other

2x2 Tests: Examples

- 1. The proportion of hybrid or non-hybrid plants attacked by insect A (presence or absence?).
- 2. Response of operated and non-operated frogs to prey (strike or non-strike?).
 - 3. Occurrence of electromorphs at two loci (segregation or linkage?).

4. In all cases:

- a. Pay attention to the marginal totals.
- b. These let you know which test to use.

2x2 Tests: X² test

1. The older method, often replaced by *G*-test, but still useful for figuring out expected frequencies:

a. Standard Method:

1. Set up 2x2 table

a. Say, 100 randomly selected plants

(*Wt* and *Hy*), sampled for the presence or absence of insect A.

	2x2 T	ests: X ²	test	
		Plant t	уре	
1		Ну	WT	
Insect	-	A	в	A+B
A	+	С	D	C+D
		A+C	B+D	A+B+C+D

	2x2 T	Cests: X	² test	
ł.		Plant (type	
		Ну	WT	
Insect	-	4	14	18
A	+	32	50	82
		36	64	100

		Cuia	Le	expec	Leu vi	arue	b ab		
	1.	A	_ =	[(A+	B) (A+C	2)]/F	A+B+C+	-D	
	2.	A =	(18) (36)/100	= 6.	48		
	3.	B =	(18) (64)/100	= 11	52		
	4.	C =	(36) (82)/100	= 29	9.52		
	5.	D =	(64) (82)/100	= 52	2.48		
		Plant t	ype		1				
		Ну	WT						
Insect	÷.,	Hy A	WT B	A+B					
Insect A	÷	Hy A C	WT B D	A+B C+D	e		Plant t	суре	
Insect A	•	Ну А С	WT B D B+D	A+B C+D A+B+C+D			Plant t Hy	:ype wT	
Insect	•	Hy A C A+C	WT B D B+D	A+B C+D A+B+C+D	, Insect	21	Plant t Hy 4	уре WT 14	1
Insect A	•	Hy A C A+C	WT B D B+D	A+B C+D A+B+C+D	, Insect A	2	Plant t Hy 4 32	уре WT 14 50	18

2x2 Tests: X² test

 Clearly, This is a bit cumbersome
 Also, when using X², it is necessary to apply Yates' Correction for continuity.
 a. Reduction or augmentation of observed values by .5 depending on whether they are larger than or smaller than observed.

2x2 Tests: X² test

- 1. Clearly, This is *really* cumbersome
- 2. S&R consider this likely to lead to an unnecessarily conservative result.