BIO 682 Nonparametric Statistics Spring 2010

Steve Shuster

http://www4.nau.edu/shustercourses/BIO682/index.htm

Lecture 8

Example: Sign Test

1. The number of warning cries delivered against intruders by male and female pairs of trogons.

	Pair	Μ	F	direction	ı Sign
Method:		_	_		0
For $N = 10$, count the	1	8	3	>	+
smallest number of $+$ or $-$ (here $=$ 2).	2	4	3	>	+
a. Don't count ties or 0.	3	6	4	>	+
2	4	6	3	>	+
	5	3	3	=	0
	6	2	6	<	-
	7	5	2	>	+
	8	3	3	=	0
	9	1	2	<	-
	10	6	0	>	+

Wilcoxon Signed-Ranks Test

1. A more powerful test because it provides a test of:

a. Order (like sign test) b. magnitude.

2. Useful in behavioral tests when information is known about magnitude:

a. It is then possible to rank pairs based on *magnitude of differences*.

Wilcoxon Signed-Ranks Test: Method

1. Use the same table as before, except add the following:

a. Calculate unsigned difference between M and F.

b. Rank them.

c. Add the sign of the difference to the rank.

2. Note, 0 is omitted from ranks.

Wilcoxon Signed-Ranks Test: Method							
Pair	М	F	dir.	d	rank	signed a	rank
1	8	3	>	5	7	7	
2	4	3	>	1	1.5	1.5	
3	6	4	>	2	3	3	
4	6	3	>	3	4.5	4.5	
5	3	3	=	0	-		
6	2	6	<	4	6	-6	
7	5	2	>	3	4.5	4.5	
8	3	3	=	0	_		
9	1	2	<	1	1.5	-1.5	
10	6	0	>	6	8	8	

Wilcoxon Signed-Ranks Test: Method

Determine N (# of non-zero d's = 8)

 Calculate:
 a. T⁺, sum of (+) ranks (= 28.5).
 b. T⁻, sum of (-) ranks (= -7.5).

 The smaller absolute value is T_s, look up on Table 30.
 a. Here, T_s = 7.5, > 6 for which P = 0.0547, ns.

Nomin	al 0	.05	0.0	025	0	.01	0.	005	Table of mp	antries for all to the w	a jaren N an c	+ N(1. 5	1] the pro	habile) the	(T') + pu	star that
	T		T		T		T	a					N			•
-	0	.0312	-		-		-		1	.4258				********	*******	
	23	.044.9	0	.0156					;	.1250	-5425 -4375 -3125					
8	3 4	.0391 .0547	3	.0234	0 1	.0078			i		-1875 -1250 -9425	.5000 .4043 .3125				
8	6	0351	34	.0195 .0273	12	.0078	01	.0039 .0078	11 12 13			,2188 ,1543 ,0738	.4219	1100		
	8.9	.0488 .0545	3 6	.0195 .0273	3	.0098	12	.0039 .0059	14 15 14			.0825	.2813 .2188 .1543	.5213 .4489 .4043		
8	10 11	.0420 .0527	* 9	.0244 .0322	5	.0098 .0137	3	.0049 .0068	17				.0781 .0781	.2438 .2891 .2344	.5273	
	13 14	.0415	10	0210	28	.0093	5	.0049	20 21 33				.0156	-1675 -1484 -1694	.4219 .3711 .3293	
	17 18	.0461	13 14	.0212	9 10	.0081 .0105	78	.0046	22 24 38					.8781 .0547 .9391	.2734 .2305	.5000
	21 27	.0471	17 18	0239	12 13	.0085	10	.0040 .0052	24					.0234	.1543	.3473 .3243 2953
S	25 26	.0453 .0520	21 22	.0247	15 16	.0083	12 13	.0043 .0054	2*						.0742	.2490
1	30 31	.0473 .0535	25 26	.0240 .0277	19 20	.0090	15 16	.0042 .0051	31 32 33						.4272	.158
	35 36	.0467	29 30	.0222 .0253	23 24	.0091 .0107	19 20	.0046 .0055	24 25 30						.8078	.082
	41 42	.0492 .0544	34 35	/0224 /0253	27 28	.0087	23 24	.0047	27 28 29							.037
	47 48	.0498	40	.0241 .0269	32 33	.0091	27 28	.0045	40 41 42							.0193
	53 54	.0478	45 47	.0247 .0273	37 38	.0090	32 33	.0047	43							.005
	60	.0487	52 53	.0242	43	.0096	37	0047							******	

For Large Samples,

1. As before, the values of T⁺ begin to approximate a normal distribution.

$$z = \frac{T^{+} - \mu_{T^{+}}}{\sigma_{T^{+}}}$$

Where: $\mu_{T^+} = N(N^+1)/4$ and $\sigma_{T^+} = N(N^+1)(2N^+1)/24$

Two Sample Tests

t-test or U-test?

a. If data meet assumptions of *t*-test, use it, smaller N needed than U- or W-tests.

b. However, if sample size can be increased, can be as/more powerful than t-test

U-test, Wilcoxon's test

- 1. Both tests devised at about the same time.
 - a. Method is slightly different, but same results are obtained.
- 2. Wilcoxon also produces the same statistic as a paired t-test.
 - a. Should be used in the same situations.

U-test: Example

- *Thermosphaeroma* isopods, inhabit hot spring in New Mexico.
 - 1. Small environment, isopods keep pool free of predators.
 - 2. Sexual dimorphism is great, males guard females.
 - a. Female sexual receptivity associated with molt.
- b. Females are spatially dispersed, apparent time constraints on male guarding time.

Male Mate Discrimination

- 1. Males observed assessing females.
 - a. Females held > 5 sec, < 15 min -were rejects.
- b. Females held over 15 min were paired.

PAIRED	BLENG	RANK	UNPAIRED	BLENG	RANK	U-Test: Method
1	30	47	2	24.5	28.5	
1	28	37	2	18	14.5	
1	18	14.5	2	28	37	1 Doult hadreningen
1	38.25	57.5	2	18	14.5	1. Kalik Douy sizes
1	30	47	2	28	37	
1	36	54.5	2	18	14.5	of naired (n) and
1	18	14.5	2	24.5	28.5	or partor (n_1) , and
1	36	54.5	2	18	14.5	
1	19.5	20	2	28	37	rejected temales
1	16.5	7	2	18	14.5	rejected females
1	30	47	2	28	37	(
1	30	47	2	18	14.5	(\mathbf{n}_{2})
1	22.75	23.5	2	22.75	23.5	(2)
1	18	14.5	2	16.5	7	
1	28	37	2	28	37	a Asasınde
1	18	14.5	2	32	51.5	u. 115 u shigit
1	22.75	23.5	2	28	37	
1	36	54.5	2	16.5	7	series.
1	22.75	23.5	2	24.5	28.5	
1	32	51.5	2	16.5	7	
1	28	37	2	24.5	28.5	h Lowest to
1	30	47	2	16.5	7	0. Lowest to
1	28	37	2	22.75	23.5	1 • 1 4
1	38.25	57.5	2	15	3.5	highest.
1	28	37	2	28	37	B-14541
1	30	47	2	12.25	1.5	
1	36	54.5	2	22.75	23.5	c. Calculate R. R.
1	30	47	2	15	3.5	\mathbf{C}_1
1	28	37	2	12.75	1.5	as Σr_{ii} .
29	27.81896	1091	29	21.49137	620	ij

U-Test: Method

2. If N < 20, Calculate U as:

 $n_1n_2 + n_2(n_2 + 1)/2 - R_2$

3. if N > 20, calculate z as approximation of normal dist:

$$z = \underbrace{\begin{array}{c} U - \mu_U \\ \sigma_U \end{array}}_{\sigma_U = n_1 n_2 / 2}$$

where: $\mu_U = n_1 n_2 / 2$
 $\sigma_U = \sqrt{[n_1 n_2(n_1 + n_2 + 1)/12]}$

Tied Ranks:

- 1. Changes the variability in the set of ranks
- a. Therefore, need to adjust the value of σ_U

$$\sigma_{\rm U} = \sqrt{[n_1 n_2/N(N-1)][(N^3 - N)/12 - \Sigma T]}$$

where

$$\Sigma T = \Sigma (t^3 - t)/12$$

b. t = number of tied scores for a given rank

c. ΣT amounts to a term in the denominator that accounts for the length of the run of tied scores.

Note That,

c. This correction makes the value of *z larger*d. Thus, the uncorrected test is more *conservative*.

$$z = \frac{\text{U} - \mu_{\text{U}}}{\sigma_{\text{U}}}$$
$$\sigma_{\text{U}} = \sqrt{[n_1 n_2/N(N-1)][(N^3 - N)/12 - \Sigma T]}$$

k-Sample Cases

1. Friedman's 2-way ANOVA

a. A test to determine whether k (= a) matched samples are from the same population.
b. Example: testing four groups of a individuals with four different feeding regimes.
c. See S&C for details on this one.

d. This test *must* have a balanced design (all samples equal) and be fully factorial (all cells filled) to work.

k-Sample Cases 2. Kruskal-Wallis Group test 1 2 3 a. A non-parametric k ANOVA ×11 ×12 ×13 ... ×1a 1. Tests the ×21 ×22 ×23 ... ×2a hypothesis that the . medians of a x_{n1} ×na groups are equal. 2. Data cast in a 2 way table.

Kruskal-Wallis Test

3. The N observations	White	Yellow	Purple
are replaced by ranks in a single series.	96 128 83 61	82 124 132 135	115 149 166 147
a. Ranking is in order,	101	109	
low to high.	White	Yellow	Purple
b. Thed ranks as before	4	2	7
(1+2+3)/3 = 2	9	8	13
(1 = 5),5 =	3	10	14
	1	11	12
	5	6	
			—
	R _j 22	37	46

Kruskal-Wallis H

1. Ranks are then summed for each of the a groups, where, $R_j = (\Sigma r_{ij}) =$ the sum of i ranks for each j-th column. $n_j =$ number of cases in the j-th column N = total number of cases. $12 \qquad a \qquad R_j^2$ $U = \sum_{k=1}^{n} \sum_{j=1}^{n} 2(N_k + 1)$

$$H = \frac{\sum_{j=1}^{n_j} \sum_{j=1}^{n_j} - 3(N+1)}{n_j}$$

with df = a-1

Kruskal-Wallis: Example

1. The numbers of beetles on three colors of flowers

White	Yellow	Purple
96	82	115
128	124	149
83	132	166
61	135	147
101	109	

Kruska	-Wallis:	Example
2. Rank the s	cores as a <i>sing</i> lowest to highe	<i>le series</i> from est.
White	Yellow	Purple
4	2	7
9	8	13
3	10	14
1	11	12
5	6	
	: <u></u> 1	
R _j 22	37	46

Kruskal-Wallis: Significance

Note that the smallest n_j is < 5:
 a. For a > 3 and n_j > 5, H is distributed as X² with df = a-1.
 b. For smaller values of n_j, must use exact probability table.
 2. See Table O:
 a. Match up sample sizes.
 b. Find value of H and read off exact probability (H_{obs} = 6.4).
 H_[.05;5,5,4] = 5.64, P<0.05.

