BIO 682
 Nonparametric Statistics Spring 2010

Steve Shuster
http://www4.nau.edu/shustercourses/BIO682/index.htm

Lecture 9

Kruskal-Wallis: Tied Ranks

2. The corrected value of $\mathrm{H}_{\mathrm{adj}}=\mathrm{H} / \mathrm{D}$,
a. This serves to increase the value of H and make the result more likely to be significant. \qquad
b. Why? Uncorrected scores are unnecessarily conservative.
c. An example of how tied ranks makes it more difficult to distinguish between group medians.

Kruskal-Wallis: Example

\qquad

1. The numbers of beetles on three colors of flowers \qquad

	flowers	
White	Yellow	Purple
96	82	115
128	124	149
83	132	166
61	135	147
101	109	

\qquad
\qquad
\qquad
\qquad
\qquad

Example With Tied Ranks		
White	Yellow	Purple
$\rightarrow 96$	82	115
128	124	149
83	135	166
61	135	$\rightarrow 135$
$\rightarrow 96$	109	
Note tied ranks		

Kruskal-Wallis: Example

\qquad
2. Rank the scores as a single series from lowest to highest. \qquad

White	Yellow	Purple
4	2	7
9	8	13
3	10	14
1	11	12
5	6	-
	-	-
R_{j}	22	37

\qquad
\qquad
\qquad
\qquad
\qquad

Example With Tied Ranks

2. Rank the scores from lowest to highest

	White	Yellow	Purple
4.5	2	7	
9	8	13	
3	11	14	
1	11	11	
$R_{\text {R }}$	$\frac{4.5}{22}$	$\frac{6}{38}$	

tied scores: $(4+5) / 2=4.5 ;(10+11+12) / 3=11$

Example With Tied Ranks

3. Note that rank scores R_{2-3} have changed:

	White	Yellow	Purple
	4.5	2	7
	9	8	13
	3	11	14
	1	11	11
	4.5	6	
R_{j}	22	38 (37)	45 (46)

a. This is because of tied ranks in these columns.

Kruskal-Wallis: Example

3. Then use K-W formula to

White	Yellow	Purple
4	2	7
9	8	13
3 1	${ }_{11}^{10}$	12
5	6	
-	-	-
$\mathrm{R}_{\mathrm{j}}{ }^{22}$	${ }^{37}$	46
$\mathrm{H}=$	$\frac{1}{1)} \stackrel{a}{\stackrel{a}{2}} \frac{\mathrm{R}_{\mathrm{i}}{ }^{2}}{\mathrm{n}_{\mathrm{j}} \mathrm{df}=a-1}$	($\mathrm{N}+1$)
$\left.+(37)^{2} / 5+(46)^{2} / 4\right]-3(14+1)$		
$\mathrm{H}_{[.05 ; 5,5,4]}=5.64, \mathrm{P}<0.05$.		

calculate H :

$$
\begin{gathered}
\mathrm{D}=1-\frac{\Sigma \mathrm{T}}{\mathrm{~N}^{3}-\mathrm{N}} \quad \text { And Now, } \\
\Sigma \mathrm{T}=\left[(2)^{3}-2\right]+\left[(3)^{3}-3\right]=6+24=30 \\
\mathrm{D}=1-\left\{30 /\left[(14)^{3}-14\right]\right\}=.989 \\
\text { Thus, } \\
\mathrm{H}_{\mathrm{adj}}=\mathrm{H} / \mathrm{D} \\
=6.4 / .989=6.47 \\
\mathrm{P}<0.049 .
\end{gathered}
$$

\qquad

Measures of Association

1. Are used to examine the relationship (covariance) between two or more variables. \qquad
a. Analogous to regression/correlation analysis.
b. Relationships are based on ranks rather than raw/transformed scores.

Measures of Association

1. The two best known are:
a. Spearman's rank order correlation.
b. Kendall's rank order correlation.
2. This latter is useful because it is possible to obtain partial correlation coefficients.
3. Useful for path analysis with small data sets
c. Also:
4. Multiple variable procedure: Kendall's coefficient of concordance.

Spearman's r_{S} : Method

1. Consider a herd of red deer in which male mating success depends on his fighting success relative to other males.
a. What is the relationship between number of fights and mating success?

Spearman＇s r_{S} ：Method

1．Rank variables X and Y separately from lowest to highest． \qquad
Ind．非Fights 非Mates \qquad
A 27
B $\quad 14$
C $\quad 5$
D 11
E 2
6
4
1
5
3 \qquad
\qquad
\qquad
\qquad

Spearman＇s r_{s} ：Method

\qquad
2．Calculate the deviations for X and $\mathrm{Y}(d)$ ， then d^{2} and Σd^{2} ：

Ind．非Fights

\＃Mates	d	d^{2}
5	0	0
3	1	1
1	1	1
4	-1	1
2	-1	1

\qquad

A	5	5	0	0
B	4	3	1	1
C	2	1	1	1
D	3	4	-1	1
E	1	2	-1	1

\qquad
\qquad
－

$$
4=\Sigma d^{2}
$$

Spearman＇s r_{s} ：Method

\qquad Then，

If：
\qquad
$r_{s}=1-\frac{{ }^{N} \sum_{d_{i}}{ }^{2}}{N^{3}-N}$
$=1$－

$$
\frac{6(4)}{5^{3}-5}
$$

$=1-.196$
\qquad
\qquad
\qquad

Spearman's r_{S} : Result

$$
r_{\mathrm{S}}=.803
$$

a. Look up significance in Table Q for $\mathrm{N}<25$.

N :	: 35	. 20	. 10	:025	:01	. 010	${ }_{\text {.0025 }}$.002	.0005 (one-tailed .001 Ctuse-tailed
3	.500	1.000	\%000	1.000	1.000				
\%	. 371	${ }_{\text {- }}^{51}$:784	${ }^{\text {P4, }}$	\%993	,09	1.000	1.000	1.000
!	${ }_{\text {: } 230}$	${ }_{\text {L }}^{\text {. } 283}$:630	-790	:933	${ }^{8633}$.ens	\%921	:978
	-248	${ }_{\text {- }}^{4} 485$	${ }_{\text {\% }}^{3} 5$. 6818	.734	.739	\% 0	-043	${ }_{90} 9$
	.234	.208	:303	:389	:071	\%727	:776	:038	:060
	. 209	. 385	. 484	-530	. 488	. 723	.793		.03s
	. 180	:3s	:443	.321	.04	:054	\%700	- 7	\% 7
	. 1728	-311	. 1218	. 503	. 382	. 43	.678	.min	.788
	.178	-37	. 101	4	-350	.600	. 683	${ }_{6} 69$:788
	. 164	:29\%	${ }^{3} 318$	${ }_{4}^{468}$. 338	. 5980	${ }_{\text {. }}^{\text {. } 612}$	${ }_{\text {d }}^{67}$. 717
	:186	:272	${ }^{-320}$. 429	-380	. 358	:5992	. 6102	: 681
	-132	-270	-34	-4158	-486	S4	-586	. 638	448
	:148	${ }_{\text {-27 }}$:34	. 408	-488	${ }_{3}^{3} 31$:562		.442
	.142	:265	:393	. 398	:466	311	:351	:5988	. 420

Spearman's r_{s} : Tied ranks

1. The effect of ties is to reduce the sum of squares Σx^{2} below $\left(\mathrm{N}^{3}-\mathrm{N}\right) / 12$.
a. The correction for ties is:
$T_{i}=\left(t^{3}-t\right) / 12$, for the i-th tied rank, and

$$
\Sigma x^{2^{\prime}}=\left(\mathrm{N}^{3}-\mathrm{N}\right) / 12-\Sigma \mathrm{T}
$$

b. Do the same for $\Sigma y^{2}\left(\right.$ corrected $\left.=\Sigma y^{2}\right)$.

Spearman's r_{S} : Tied ranks

1. these values are then substituted into originally derived formula for r_{S} :

$$
r_{\mathrm{S}}=\frac{\Sigma x^{2^{\prime}}+\Sigma y^{2^{\prime}}-\Sigma d^{2}}{\sqrt{2\left(\Sigma x^{2} \Sigma y^{\prime}\right)}}
$$

Spearman's r_{S} : Tied ranks

2. For Large samples: $(\mathrm{N}>10)$
a. $t=r_{\mathrm{S}} \sqrt{\left[(\mathrm{N}-2) /\left(1-r_{\mathrm{S}}\right)\right.}$
b. This value is distributed as Student's t with $\mathrm{df}=\mathrm{N}-2$
c. This table is in S\&R

Derivation of Spearman's r_{S}

\qquad

1. This permits visualization of similarity with Pearson's parametric r.
2. Imagine two sets of variables X_{i} and Y_{i}
a. Their relationship can be determined by arranging them in pairs and taking the difference between them:

$$
d_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}-\mathrm{Y}_{\mathrm{i}}
$$

Derivation of Spearman's r_{S}

$$
d_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}-\mathrm{Y}_{\mathrm{i}}
$$

1. If the relationship is perfect, every $d_{\mathrm{i}}=0$.
2. Deviations from 0 indicate how good or bad the correlation is.
3. Raw scores are difficult to use because - and + scores could cancel.
a. Thus, d_{i}^{2} provides a better estimate for each pair of the deviation from a perfect correlation.
b. Also, with large d_{i} 's, the larger $\Sigma d_{\mathrm{i}}^{2}$ will be.

Derivation of Spearman's r_{S}

> 3. If $x=\left(\boldsymbol{X}-\mathrm{X}_{\mathrm{i}}\right)$ and $y=\left(\boldsymbol{Y}-\mathrm{Y}_{\mathrm{i}}\right)$,
> Where $\boldsymbol{X}=\Sigma \mathrm{X}_{\mathrm{i}} / \mathrm{n}_{\mathrm{i}}$ and $\boldsymbol{Y}=\Sigma \mathrm{Y}_{\mathrm{i}}^{\prime} / \mathrm{n}_{\mathrm{i}}$
a. Then the general expression for a parametric correlation coefficient is:

$$
r=\frac{\Sigma x y}{\sqrt{\left(\Sigma x^{2} \Sigma y^{2}\right)}}
$$

b. this expression measures the degree to which two variables are correlated.

To See This,

1. Imagine a variable, y , plotted on itself.
2. The general equation then becomes:

$$
r=\frac{\Sigma(y)(y)}{\sqrt{\left(\Sigma y^{2} \Sigma y^{2}\right)}}=1
$$

For a Nonparametric Solution

\qquad

1. Assume X_{i} and Y_{i} are ranks.
2. Then, sum of these integers is:
\qquad

$$
\Sigma X_{i}=N(N+1) / 2
$$

2. Really?
$1+2+3+4+5=15 ; \mathrm{N}=5$
$5(5+1) / 2=30 / 2=15$

> Also,
> 3. The sum of their squares is:
> $\Sigma \mathrm{X}_{\mathrm{i}}{ }^{2}=\frac{\mathrm{N}(\mathrm{N}+1)(2 \mathrm{~N}+1)}{6}$
> 4. Really?
> $1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55 ; \mathrm{N}=5$
> $[5(5+1)][(2)(5)+1] / 6=(30)(11) / 6=55$

Then,

5. It is clear that the expressions used to calculate r_{S} are simply what arises from sums \qquad of integers or their squares.

Also, since
$\Sigma x^{2}=\Sigma\left(X-X_{i}\right)^{2}=\Sigma \mathrm{X}_{\mathrm{i}}{ }^{2}-\left[\left(\Sigma \mathrm{X}_{\mathrm{i}}\right)^{2}\right] / \mathrm{N}$,
i.e., the expression for the sum of the squared \qquad deviations from the mean (a way of expressing central tendency in parametric statistics),

So,

1. Using the equivalent nonparametric expression:
$\Sigma x^{2}=\frac{\mathrm{N}(\mathrm{N}+1)(2 \mathrm{~N}+1)}{6}-\frac{\mathrm{N}(\mathrm{N}+1)^{2}}{4}$

$$
=\left(\mathrm{N}^{3}-\mathrm{N}\right) / 12
$$

1. and similarly, $\Sigma y^{2}=\left(\mathrm{N}^{3}-\mathrm{N}\right) / 12$

Now,
2. Because
$d=x-y$
Then,
$d^{2}=(x-y)^{2}=x^{2}-2 x y+y^{2}$
for each d_{i}, so,
$\Sigma d^{2}=\Sigma x^{2}+\Sigma y^{2}-2 \Sigma x y$

But,

3. In theory,
$r=\frac{\Sigma x y}{\sqrt{\left(\Sigma x^{2} \Sigma y^{2}\right)}}=r_{\mathrm{S}}$
if X_{i} and Y_{i} are ranks.

Thus, By Substitution,

4. The expression for Σd^{2} becomes:

$$
\Sigma d^{2}=\Sigma x^{2}+\Sigma y^{2}-2 r_{\mathrm{S}} \sqrt{\left(\Sigma x^{2} \Sigma y^{2}\right)}
$$

> Thus,

$$
r_{\mathrm{S}}=\frac{\Sigma x^{2}+\Sigma y^{2}-\Sigma d^{2}}{2 \sqrt{\left(\Sigma x^{2} \Sigma y^{2}\right)}}
$$

and by substitution of $\Sigma x^{2}=\left(\mathrm{N}^{3}-\mathrm{N}\right) / 12=\Sigma y^{2}$
into this equation,

$$
\begin{array}{r}
\text { We Have, } \\
r_{S}=1-\frac{6 \Sigma d_{i}^{2}}{N^{3}-N}
\end{array}
$$

