BIO 682
 Quantitative Biology Spring 2010

Steve Shuster
http://www4.nau.edu/shustercourses/BIO682/index.htm
Lecture 17

Indirect Gradient Analysis

Refers to several distance-based approaches:

- Polar ordination, PO (Bray-Curtis ordination)
- Principal Coordinates Analysis, PCoA (Metric multidimensional scaling)
- Nonmetric Multidimensional Scaling, NMDS

Distance Based Approaches

\qquad

- Rely on a distance matrix as input so are \qquad highly sensitive to choice of distance measure
- They "hide information" - Information about species is collapsed (we don't know what individual species are doing, we just
\qquad
\qquad know how they relate to all other species)

Polar Ordination - PO

(Bray and Curtis 1957)

Arranges samples between endpoints or "poles" according to the distance matrix.

In the earliest versions of PO, these endpoints were the two samples with the highest ecological distance between them, or two samples which are suspected of being at opposite ends of an important gradient (subjective?)

Polar Ordination

\qquad

- These samples became the endpoints for the \qquad primary axis
- The $2^{\text {nd }}$ axis was determined by either the \qquad two samples with the next highest ecological distance \qquad
- Or two samples creating an axis with the lowest correlation with axis 1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Polar Ordination

- Axis 1 score $=\left(\mathrm{D}^{2}+\mathrm{D}^{2}-\mathrm{D} 2^{2}\right) / 2 \mathrm{D}$
- Where D is the distance between the endpoints,
- D1 is the distance between a sample and the first endpoint
- D2 is the distance between a sample and the second endpoint

Axis 1 distinguishes bryophyte communities on pines from other trees, Axis 2 distinguishes oaks from other hardwoods

Polar Ordination

- In PO the order of the axes are important (axis one is more important than axis two), but the direction and the numeric scale are arbitrary
- Important that axes are not correlated
- other techniques (MMDS, NMDS) automatically give uncorrelated or orthogonal axes

Principal Coordinates Analysis PCoA or MMDS

- Maximizes the linear correlation between the distances in the distance matrix, and
- Displays the distances in a space of low dimension (typically, 2 or 3 axes)
- Distances between N objects are represented in $N-1$ dimensions
- When distance is Euclidean it is equivalent to PCA

Disadvantages

PCoA maximizes linear correlation so with moderate to high beta diversity an "arch effect" occurs

Arch Effect

A and B are 60 units apart
B and C are 60 units apart

Arch Effect

A and B are 60 units apart
B and C are 60 units apart
A and C are 30 units apart

Non-metric Multidimensional Scaling - NMDS

- Whereas PCoA maximizes linear correlation, NMDS maximizes a rank order correlation
- This difference effectively takes away the arch effect

NMDS

1. User selects the \# of dimensions (N) and the distance measure
2. The distance matrix is calculated
3. An initial configuration of samples in N dimensions is selected. This configuration can be random
4. A measure of 'stress' (mismatch between the rank order of distances in the data, and the rank order of distances in the ordination) is calculated
5. The samples are moved slightly in a direction that decreases the stress
6. 4 and 5 are repeated until 'stress' appears to reach a minimum. The final configuration of points may be rotated if desired.

NMDS

- Configuration depends on the \# of axes (axes 1 and 2 in a three dimensional solution will not be the same as a 2 dimensional solution)
- Axis \# does not reflect importance

Indirect Gradient Analysis, cont.

- Eigenanalysis-based approaches
- Linear model
- Principal Components Analysis, PCA
- Unimodal model
- Correspondence Analysis, CA (Reciprocal Averaging)
- Detrended Correspondence Analysis, DCA

Eigenanalysis-based indirect gradient analysis (PCA, CA, and DCA)

1. An eigenanalysis is performed on a square, symmetric matrix derived from the data matrix (matrix algebra)
2. There is a unique solution to the eigenanalysis, no matter the order of data.
3. Axes are ranked by their eigenvalues. Thus, the first axis has the highest eigenvalue, the second axis has the second highest eigenvalue, etc.

Eigenanalysis-based indirect gradient analysis (PCA, CA, and DCA)

4. In principal components analysis, eigenvalues are 'variance extracted'. In methods related to correspondence analysis, eigenvalues are 'inertia extracted', or equivalently, correlation coefficients (species and sites).
5. There are a potentially large number of axes (usually, the number of samples minus one, or the number of species minus one, whichever is less) so there is no need to specify the
dimensionality in advance. However, the number of dimensions worth interpreting is usually very low.
6. Species and samples are ordinated simultaneously, and can hence both be represented on the same ordination diagram (if this is done, it is termed a biplot).

Principal Components Analysis

\qquad
Geometrically, PCA is a rigid rotation of the original data matrix \qquad
Can be defined as a projection of samples onto a new set of axes, such that the \qquad maximum variance is projected or "extracted" along the first axis,
The maximum variation uncorrelated with axis 1 is projected on the second axis,
The maximum variation uncorrelated with the first and second axis is projected on the \qquad third axis, etc.

Principal Components Analysis

- This is why typically few axes are important because the first two or three axes often explain close to 90% of the variance
\qquad
\qquad
- Especially if samples are collected with gradients in mind

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principal Components Analysis

The abundance of the species is continuously increasing in the direction of the arrow,

Decreasing in the opposite direction. Thus PCA is a 'linear method' and is subject to the arch or horseshoe effect

Principal Components Analysis

\qquad

- Eigenvalues represent the variance
described by each axis and are usually given as percentages \qquad
- The axis cut-off occurs when adding new axes doesn't appreciably add to the variance explained

Disadvantages

PCA assumes linear relationships between samples and environmental gradients and \qquad this is hardly ever the case

Horseshoe effect

Correspondence Analysis (CA)

- Also known as reciprocal averaging, because one algorithm for finding the solution involves the repeated averaging of sample scores and species scores
- Instead of maximizing 'variance explained', CA maximizes the correlation between species scores and sample scores

Correspondence Analysis (CA)

\qquad

- Correspondence analysis is better for count data \qquad and more suitable if species have unimodal responses to the underlying parameters
- They favor a certain range of the parameter and become more rare for lower and higher values
- The eigenvalue of the CA axis is equivalent to the correlation coefficient between species scores and \qquad sample scores

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Disadvantages

- CA is prone to the arch effect and gradient \qquad compression which can seriously affect ecological interpretation \qquad
\qquad
- These problems have led to Detrended
\qquad
\qquad
\qquad

Detrended Correspondence Analysis
(DCA) Hill and Gauch 1980

- DCA eliminates the arch effect by detrending (Hill and Gauch 1982)
- Detrending can be done by polynomials or by \qquad segments

Detrended Correspondence Analysis

Detrending by polynomials is the more elegant of the two:
A regression is performed in which the second axis is a polynomial function of the first axis,

The second axis is replaced by the residuals from this regression.

Similar procedures are followed for the third and higher axes.

Detrended Correspondence Analysis

\qquad

- To detrend the second axis by segments, the first axis is divided up into segments (usually 26), and the samples within each segment are centered to have a zero mean for the second axis
- The procedure is repeated for different 'starting points' of the segments
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Detrended Correspondence Analysis

\qquad
The compression of the ends of the gradients \qquad is corrected by nonlinear rescaling.

Rescaling shifts sample scores along each axis such that the average width (or 'tolerance') is equal to 1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Detrended Correspondence Analysis

\qquad
Rescaling has a beneficial consequence: the axes are scaled in units of beta diversity (SD units, or \qquad units of species standard deviations).

Thus if the underlying gradient is important or well known, it is possible to plot the DCA scores as a function of the gradient, and

Thereby determine whether the species 'perceive' the gradient differently than we measure it.

Disadvantages

- Because of the detrending process DCA will destroy any true arch in a data set
- Performs poorly with skewed species distributions (i.e. not unimodal)
- Does not handle complex sampling designs well

Detrended Correspondence Analysis

\qquad

- DCA is based on an underlying model of species distributions (the unimodal model), while NMDS is not.
- Use DCA when you want to see how species relate to each other along a gradient

Indirect Gradient Analysis

Distance-based approaches

- Polar ordination, PO (Bray-Curtis ordination)
- Principal Coordinates Analysis, PCoA (Metric multidimensional scaling)
- Nonmetric Multidimensional Scaling, NMDS

Indirect Gradient Analysis.

- Eigenanalysis-based approaches
- Linear model
- Principal Components Analysis, PCA
- Unimodal model
- Correspondence Analysis, CA (Reciprocal Averaging)
- Detrended Correspondence Analysis, DCA

