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Abstract

Forecasts are pervasive in all areas of applications in business and daily life. Hence, evaluating the

accuracy of a forecast is important for both the generators and consumers of forecasts. There are two

aspects in forecast evaluation: (1) measuring the accuracy of past forecasts using some summary statistics

and (2) testing the optimality properties of the forecasts through some diagnostic tests. On measuring

the accuracy of a past forecast, this paper illustrates that the summary statistics used should match the

loss function that was used to generate the forecast. If there is strong evidence that an asymmetric

loss function has been used in the generation of a forecast, then a summary statistic that corresponds

to that asymmetric loss function should be used in assessing the accuracy of the forecast instead of the

popular root -mean-square error or mean-absolute error. On testing the optimality of the forecasts, it

is demonstrated how the quantile regressions set in the prediction-realization framework of Mincer and

Zarnowitz (1969) can be used to recover the unknown parameter that controls the potentially asymmetric

loss function used in generating the past forecasts. Finally, the prediction-realization framework is applied

to the Federal Reserve�s economic growth forecast and forecast sharing in a PC manufacturing supply

chain. It is found that the Federal Reserves values overprediction approximately 1.5 times more costly

than underprediction. It is also found that the PC manufacturer weighs positive forecast errors (under

forecasts) about four times as costly as negative forecast errors (over forecasts).
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Forecasts are pervasive in all areas of business and daily life. Weather forecasts are important for planning

day-to-day activities. Farmers rely on them for the planting and harvesting of crops while airline and cruise

industries need them to make decisions that maintain safety in the sky and the sea. The insurance industry

relies on them to form informed pricing and capital decisions. Corporations use forecasting to predict their

future �nancial needs, production planning, human resource planning, etc. Forecasts are used by investors

to value companies and their securities. The startup of a new business requires forecasts of the demand for

the product, the expected shares in the market, the capacity of competitor, and the amount and sources for

funds, etc. In supply chain management, businesses have to synchronize the ordering of supplies to meet the

forecasted demand of their customers. In government policy decisions, economic forecasts are important for

determining the appropriate monetary/�scal policies. In the healthcare industry, forecasts can be used to

target disease management or device personalized health care based on predicted risk.

As a result, evaluating the accuracy of a forecast is important for both the generators and consumers of

forecasts. However, there is abundant evidence that many of the forecasts being generated are inconsistent

with the realizations of the forecasted values. Silver (2012) discussed the weather industry�s bias toward

forecasting more precipitation than would actually occur, what meteorologists call "wet bias". Using 121

responses to a 26-question mail questionnaire sent to the highest ranking �nancial o¢ cers in 500 �rms on

the Fortune 500 listing, Pruitt and Gitman (1987) found that capital budgeting forecasts were optimistically

biased by people with work experience. Ali et al. (1991) found that analysts set overly optimistic forecasts

of the next period�s annual earnings per shares. Lee et al. (1997) and Cohen et al. (2003) provided ample

evidence of overoptimistic forecasts across industries ranging from electronics and semiconductors to medical

equipment and commercial aircraft in the supply chains. In terms of economic variables forecasts, Capistrán

(2008) provided evidence that the Federal Reserve�s in�ation forecasts systematically underpredicted before

Paul Volcker appointment as Chairman and systematically overpredicted afterwards until the second quarter

of 1998.

Do these forecast biases signify suboptimal forecast performance? In the traditional sense, the overpre-

diction or underprediction bias are indications of suboptimal forecasts. However, the traditional tests for

forecast optimality rely, typically, on the assumption of the symmetric square error loss function. Under

this square error loss, overprediction and underprediction are weighted equally, and optimal forecasts imply

that the observed forecast errors will have a zero bias and are uncorrelated with variables in the forecasters�

information set.

However, strong arguments can be provided for the rationale that forecasters might not have adopted

a symmetric error loss function. For example, in �rms� forecasting of sales, overpredictions will result in

over inventory and increased insurance costs, and tied up capital while underpredictions will lead to loss
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of goodwill, reputation, and current and future sales. Firms may decide that the cost of loss of goodwill is

much higher than increased insurance costs. Therefore, they weigh the underprediction errors more than

the overprediction errors. For money managers of banks, overpredicting the value-at-risk ties up more

capital than necessary while underpredicting leads to regulatory penalties and the need for increased capital

provisions. They may conclude that the cost of increased capital provisions is higher than the cost of tied

up capital and decide to weigh the underprediction errors more than the overprediction errors. It might

be particularly costly for the Federal Reserves to overpredict GDP growth when growth is already slow,

signaling a false recovery, which could lead to an overly tight monetary policy at exactly the wrong time.

The cost of over forecasting is not always the same as that of under forecasting. The dissatisfaction that

people have when the weatherman forecasts a sunny day but it turns out to be a rainy day and, hence,

ruin a picnic party, is higher than when it is forecasted to be rainy but turns out to be sunny. This can be

the explanation for the wet bias and illustrate the asymmetric loss function used by the weatherman when

performing their forecasts.

Keane and Runkle (1990) argued that:

If forecasters have di¤erential costs of over- and underprediction, it could be rational for them

to produce biased forecasts. If we were to �nd that forecasts are biased, it could still be claimed

that forecasters were rational if it could be shown that they had such di¤erential costs. (719)

Varian (1974), Waud (1976), Zellner (1986), Christo¤ersen and Diebold (1997), and Patton and Timmermann

(2007) all argued that the presence of forecast bias is not necessary an indication of suboptimal forecast.

Rostek (2010) provided a foundation for the practical and theoretical justi�cations for the assignment of

di¤erent weights for overprediction and underprediction by a forecaster. Inspired by prior works of Manski

(1988) and Chambers (2007), Rostek (2010) formalized the concept of quantile maximization in choice-

theoretic language in choice theory and demonstrated the characteristics of robustness and ordinality being

its advantages when compared to the traditional moments based decision criteria. The speci�cation of a �

quantile maximizer provides a systematic de�nition of riskiness in terms of downside risk and upside chance

(losses and gains) in a forecaster�s asymmetric preference towards overprediction and underprediction. In an

attempt to improve the forecast performance of predicting state tax revenues in Iowa, Lewis and Whiteman

(2015) provided example that the Institute for Economic Research at the University of Iowa had used an

asymmetric loss function that treated forecasted revenue shortfalls d = 1; 2; : : : ; 10 times as costly as equal-

sized surpluses.

Numerous articles have argued for the likelihood of and addressed the issues related to an asymmetric

loss functions being used by forecasters (see e.g., Granger, 1969 & 1999; Varian, 1974; Granger and Newbold,
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1986; Zellner, 1986; Ito, 1990; West et al., 1993; Weiss, 1996; Christo¤ersen and Diebold, 1997; Batchelor and

Peel, 1998; Granger and Pesaran, 2000; Artis and Marcellino, 2001; Pesaran and Skouras, 2002; Carpistran,

2006; Patton and Timmermann, 2007; and Elliott and Timmermann, 2008).

Elliott and Timmermann (2008) summarized that forecast evaluation usually comprised of two separate,

but related, tasks: (1) measuring the accuracy of past forecasts using some summary statistics and (2) testing

the optimality properties of the forecasts through some diagnostic tests.

On the �rst task of assessing the accuracy of a forecast, the most popular summary measures have been

the sample mean-square error (MSE), the sample root-mean-square error (RMSE) and the sample mean-

absolute error (MAE). However, the MSE and RMSE metrics are appropriate only if the loss function

used in the forecaster�s decision making process is that of the symmetric mean-square error. The MAE

is appropriate if the loss function is the symmetric mean-absolute error. Elliott and Timmermann (2008)

demonstrated that a forecast that was considered as good using one measure might not be good according to

a di¤erent measure. Gneiting (2011a) provided detailed theoretical justi�cations for such recommendation

and concluded that:

If point forecasts are to be issued and evaluated, it is essential that either the scoring function

be speci�ed ex ante, or an elicitable target functional be named, such as the mean or a quantile

of the predictive distribution, and scoring functions be used that are consistent for the target

functional. (757)

The scoring function that Gneiting alluded to is the summary measure to be used to assess the accuracy

of a forecast that Elliott and Timmermann (2008) referred to above while the elicitable target functional

is determined by the loss function adopted by the forecaster. Hence, the chosen summary measure used

to assess the accuracy of a forecast should depend on the loss function adopted by the forecaster when

performing the forecast.

In Section 2, we demonstrate that if there is strong evidence that an asymmetric loss function has been

used in the generation of a forecast, then a summary metric that corresponds to that asymmetric loss function,

in particular the sample root-mean-weighted-square error (RMWSE) or the sample mean-weighted-absolute

error (MWAE), should be used in assessing the accuracy of the forecast instead of the popular RMSE or

MAE; which are appropriate only if the symmetric loss function has been used to generate the forecast.

The second task of testing the optimality properties of a forecast also relies on the knowledge of the loss

function being used in generating the forecast as well as the underlying data generating process (DGP) that

generates the future values of the predicted variable, both of which are, unfortunately, unknown in typical

situations. There are a few families of popular loss function speci�cations being used in the literature. Elliott
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et al. (2005) proposed a �exible family of loss functions which subsumed the asymmetric lin-lin piecewise

linear loss function, in which the MAE loss was a special case, and the asymmetric quad-quad loss function,

which nested the MSE loss. Varian (1974), Zellner (1986), and Christo¤ersen and Diebold (1997) used the

linex loss while Christo¤ersen and Diebold (2006) investigated the sign loss function.

It can be readily shown that the optimal forecasts for the lin-lin loss function are the conditional quantiles

while those for the quad-quad loss functions are the conditional expectiles. See, e.g., Rai¤a and Schlaifer

(1961), Ferguson (1967) and Gneiting (2011a, 2011b) for conditional quantiles, and Gneiting(2011a) for con-

ditional expectiles. Increasingly, forecasts are being generated using the conditional quantiles or expectiles.

Kokic et al. (2000) illustrated how expectile regression can be used to forecast farm�s income. Bremnes (2004)

and Nielsen et al. (2006) used quantile regression to forecast wind powers. Friederichs and Hense (2007) used

censored quantile regression to forecast extreme precipitation in Germany. Taylor (2007) forecasted daily

sales of various items from an outlet of a large UK supermarket chain using exponentially weighted quantile

regression. Weerts et al. (2011) used quantile regression to forecast and estimate hydrological uncertainty in

England and Wales. Soyiri and Reidpath (2013) applied quantile regression to forecast respiratory deaths in

New York City. Soyiri et al. (2013) forecasted peak asthma admissions in London using quantile regression.

Yu (2013) forecasted the development of information and communication technology using quantile regres-

sion. Bastianin et al. (2014) employed expectile regression to forecast food prices. Voudouris et al., (2014)

forecasted plausible trajectories of natural gas production in the world using both quantile and expectile

regressions.

With the increasing popularity of quantile regression (which corresponds to the adoption of the lin-lin

loss function) in forecasting, an important issue that becomes eminent in testing the optimality properties

of a forecast is the determination of the parameter that dictates the degree of asymmetry in the asymmetric

loss function being used. Elliott and Timmermann (2008) suggested that one can estimate the unknown

parameter that controls the degree of asymmetry of the lin-lin and quad-quad loss functions through the

�rst order condition of the risk adopted by the forecasters. In Section 3, we demonstrate how the estimation

of the unknown parameter can be accomplished using the quantile regressions and expectile regressions

that are set naturally in the prediction-realization framework of Mincer and Zarnowitz (1969) depending on

whether a lin-lin or quad-quad loss function is assumed to have been employed in generating the forecasts.

After having estimated the asymmetric parameter that controls the asymmetry of the loss functions, one

can then choose between the RMSE and RMWSE, or the MAE and MWAE as the appropriate metric in

evaluating forecast accuracy. The major advantage of the Mincer-Zarnovitz quantile and expectile regression

approach proposed here is its extremely easy implementation via existing statistical software that is capable

of performing quantile and expectile regression estimations.
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The rest of the paper is organized as follows. In Section 2, arguments and evidence are provided to

illustrate that the metric used in measuring the accuracy of a forecast should be chosen according to the loss

function being used when a forecast was performed. Section 3 demonstrates how the unknown parameter

that controls the degree of asymmetry in a lin-lin loss function used by a forecaster can be recovered using the

Mincer-Zarnowitz prediction-realization framework. It also presents the asymptotic of the Mincer-Zarnovitz

quantile regression analysis, illustrates the implementation of the Mincer-Zarnovitz quantile regression fore-

cast optimality test, and provides simulation results of the optimality test. Section 6 illustrates applications

of the Mincer-Zarnowitz prediction-realization approach to assess the Federal Reserve�s Greenbook forecasts

and the sales forecasts of an electronic component manufacturer to try to recover the parameter of the

possibly asymmetric loss function used in their forecast decisions.

2 Matching the Accuracy Measurements for Forecasts with the

Loss Functions

We �rst introduce some basic notations before illustrating why the summary measures used for evaluating

forecast accuracy should be determined by the loss functions used by the forecasters. Let Y be the random

variable to be forecasted, Ft be the information set available at time t, Z = fZtgTt=1 = fYt; XtgTt=1 be the

vector of relevant dependent and independent variables (data) which is part of Ft used in the 1 to n-period

ahead forecast (
n
Ŷt

oT+n
t=T+1

) of Y , T be the time when the forecast is performed, Ŷ = g (Z; �) be the point

forecast, in which � is the unknown vector of parameters in the underlying forecast model, and � (Y � g(Z; �))

be the loss function that maps the forecast (Ŷ ), outcome of the forecast (Y ) and data (Z) into the real line.

The forecast decision is to choose Ŷ = g (Z; �) that minimizes the risk

R (�; g) = EY;Z [� (Y � g (Z; �))]

=

Z
z

Z
y

� (y � g (z; �)) fY (yjz; �) fZ (zj�) dydz

=

Z
z

EY [� (Y � g (Z; �)) jZ; �] fZ (zj�) dz

where fY (yjz; �) and fZ (zj�) are the conditional probability density functions. The classical forecast mini-

mizes

EY [� (Y � g (Z; �)) jZ; �] =
Z
y

� (y � g (z; �)) fY (yjz; �) dy (1)

given Z and �. We de�ne the forecast error as e = Y � Ŷ = Y � g (z; �).

A few of the popular and commonly used loss functions are
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1. Square loss: � (e) = e2

2. Absolute loss: � (e) = jej

3. Lin-lin loss: � (e) = 2 [� + (1� 2�) I (e < 0)] jej for 0 < � < 1 of which the absolute loss is a special

case with � = 0:5

4. Quad-quad loss: � (e) = 2 [! + (1� 2!) I (e < 0)]
�
e2
�
for 0 < ! < 1 of which the squared loss is a

special case with ! = 0:5

The most popular forecasts accuracy measures are the sample MSE =
�Ki=1e

2
i

K and MAE =
�Ki=1jeij

K ,

which are the sample counterparts of the expected square loss and the expected absolute loss, respectively.

Hence, it is natural to use the sample MSE, or root-mean-square error, RMSE =

q
�Ki=1e

2
i

K , as a measure

of forecast accuracy when the forecasts are generated using the symmetric square loss function and use the

sample mean-absolute error, MAE, for the symmetric absolute loss function. However, we have provided

arguments in the Introduction that one should use the sample mean-weighted-absolute error,

MWAE =
�Ki=12 [(w) + (1� 2w) I (ei < 0)] jeij

K

as the metric to measure forecast accuracy for asymmetric lin-lin loss function, and use the sample mean-

weighted-square error,

MWSE =
�Ki=12 [(w) + (1� 2w) I (ei < 0)]

�
e2i
�

K

or root mean-weighted-square error,

RMWSE =

r
�Ki=12 [(w) + (1� 2w) I (ei < 0)] (e2i )

K

as the metric for the quad-quad loss function since these metrics are the corresponding sample counterparts

of the respective expected loss functions.

2.1 Simulated Examples

A few simulations were performed to illustrate that the summary measures used for forecasts accuracy should

match the loss functions used in generating the forecasts. Realizations of the forecasted variable Y were

generated by the following data generating processes. In particular, the �rst three processes are traditional

AR processes with di¤erent values of autocorrelation, the other two processes are QAR processes (Koenker

and Xiao, 2006.).
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DGP1 Qyt (� jyt�1) = �0 (�) + �1yt�1 =
�
2 + 3��1 (�)

�
+ 0:6yt�1

where Qyt (� jyt�1) was the conditional quantile function of Y given yt�1. The realizations were generated

using

yt =
�
2 + 3��1 (ut)

�
+ 0:6yt�1 where ut � i.i.d. U [0; 1]

with ut being generated from an independently and identically distributed uniform distribution, U [0; 1].

DGP2

Qyt (� jyt�1) = �0 (�) + �1yt�1 =
�
2 + 3��1 (�)

�
+ 0:95yt�1;

yt =
�
2 + 3��1 (ut)

�
+ 0:95yt�1 where ut � i.i.d. U [0; 1]

DGP3

Qyt (� jyt�1) = �0 (�) + �1yt�1 =
�
2 + 3��1 (�)

�
+ 0:6yt�1 + 0:2yt�2;

yt =
�
2 + 3��1 (ut)

�
+ 0:6yt�1 + 0:2yt�2 where ut � i.i.d. U [0; 1]

DGP4

Qyt (� jyt�1) = �0 (�) + �1 (�) yt�1

=
�
2 + 3��1 (�)

�
+min

�
1

4
+ �;

3

4

�
yt�1

yt =
�
2 + 3��1 (ut)

�
+min

�
1

4
+ ut;

3

4

�
yt�1

where ut � i.i.d. U [0; 1]

DGP5

Qyt (� jyt�1) = �0 (�) + �1 (�) yt�1

=
�
2 + 3��1 (�)

�
+
�
0:2I

�
2 + 3��1 (�) � 0

�
+0:8I

�
2 + 3��1 (�) < 0

��
yt�1
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yt =
�
2 + 3��1 (ut)

�
+
�
0:2I

�
2 + 3��1 (ut) � 0

�
+0:8I

�
2 + 3��1 (ut) < 0

��
yt�1

where ut � i.i.d. U [0; 1]

The simulations were performed with an in-sample size of n = 100 with the number of 1-period ahead

rolling forecasts used in the hold-out sample set at K = 400. A random sample of N = n +K realizations

from one of the above DGPs was generated. Starting from T = n; � � � ; N�1, 1-period ahead forecast on YT+1

was performed using rolling quantile regression of Koenker and Bassett (1978) with � 2 (0:1; 0:2; � � � ; 0:8; 0:9)

or expectile regression in Newey and Powell (1987) with ! 2 (0:1; 0:2; � � � ; 0:8; 0:9) as well as arima (p; d; q)

based on the data Z = fZtgTt=T�n+1 = fYtg
T
t=T�n+1. The quantile regression minimizes the sampleMWAE

of the residuals as its loss function while the expectile regression minimizes the sample RMWSE. Hence,

the MWAE should be the appropriate metric to use in measuring the accuracy of forecasts performed using

the quantile regressions while RMWSE should be used as the metric when forecasts are performed using

expectile regressions.

Table 1 presents the sample RMSE andMWAE for the various DGPs when the quantile regressions and

the arima are used to generate the forecast with the asymmetric lin-lin loss function. It can be seen from

Table 1 that the smallest MWAE (highlighted as the boxed numbers) of the quantile regression forecasts

occurs at the weight w that matches the corresponding � of the quantile regressions used in generating the

forecasts in general with the exception of the near unit root DGP3, DGP4 and DGP5 where the smallest

MWAE occurs at w = 0:3 for � = 0:4. Hence, if MAE (MWAE with w = 0:5) is used in assessing

the accuracy of the forecasts, only the forecasts performed using the quantile regression with � = 0:5

which corresponds to the symmetric lin-lin loss with � = 0:5 will be deemed as being optimal. When the

forecasters use any of the asymmetric loss function with � 6= 0:5, their forecast performance will be deemed

as suboptimal using theMAE metric. However, if theMWAE metric with the weight w that corresponds to

the asymmetric parameter � of the lin-lin loss function is used, instead, all the quantile regression forecasts

performed using the di¤erent degrees of asymmetry determined by � will be deemed as optimal. The smallest

RMSE occurs at � = 0:5 for the two stationary DGPs and at � = 0:4 for the three near unit root DGPs.

Similarly, only the quantile regression forecasts with � close to 0:5 are considered as optimal using the RMSE

metric. The forecasts performed using the arima model is comparable to those performed using the quantile

regression with � close to 0:5 when measured by RMSE.

Table 2 presents the sample RMSE and MWSE when the expectile regressions are used to generate

the forecasts with the asymmetric quad-quad loss function. Again, the smallest MWSE of the expectile
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regression forecasts occurs at the weight w that matches the corresponding ! used in generating the forecasts.

Results from both Table 1 and Table 2 support the recommendation that the metrics being used to

measure forecasts accuracy should match the loss functions used in generating the forecasts.

However, one will need to know the weights of the asymmetric loss function used by a forecaster, which

are typically unknown, in order to incorporate the correct weights, w, in the MWAE or MWSE metrics.

Fortunately, this asymmetric parameter of the loss function can be recovered through the Mincer-Zarnowitz

quantile/regression approach that will be introduced next.

3 Recovering the Loss Functions via theMincer-Zarnowitz Prediction-

Realization Analysis

In this section, we illustrate how the loss function that a forecaster has adopted can be recovered (backed-

out) via the quantile regression or expectile regression that is set in the framework introduced in Mincer and

Zarnowitz (1969). If the risk expressed in Equation (1) is di¤erentiable, the �rst order condition for the

minimization of the risk becomes

EY [�
0 (Y � g (Z; �)) jZ; �] =

Z
y

�0 (y � g (z; �)) fY (yjz; �) dy = 0: (2)

(In the case of quantile regression, the loss function �� (u) is di¤erentiable everywhere except at u = 0.)

As presented in Elliott and Timmermann (2008), the generalized forecast errors, �
0
(Y � g (Z; �)), should be

unpredictable and follow a martingale di¤erence sequence given all the information utilized to generate the

forecasts. This leads to the following sample analog of the orthogonality condition for a one-period ahead

forecast:
1

K

T+K�1X
t=T

�0 (yt+1 � g (zt+1; �)) = 0 (3)

In addition, �0 (yt+1 � g (zt+1; �)) should be uncorrelated with any information in the formation set, Ft, used

in the forecast at time t. Hence, another common orthogonality condition being adopted is

1

K

T+K�1X
t=T

�0 (yt+1 � g (zt+1; �)) vt = 0 (4)

where vt is any function of the data, fzsgt+1s=1, available at time t+ 1.

It is well know from the orthogonality condition in Equation (2) that the optimal forecast when min-

imizing the risk in Equation (1) for the symmetric square loss function is the conditional mean function,
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g (z; �) = E (Y jZ = z; �), while the conditional median is the optimal forecast for the symmetric absolute

loss function. Likewise, the conditional quantile function, g (z; �; �) = F�1Y (� jZ = z; �) = Q� (Y jZ = z; �),

is the optimal forecast for the asymmetric lin-lin loss (see, e.g., Koenker, 2005, pp. 5-6 and Gneiting, 2011b)

and the conditional expectile function, g (z; �) = �! (Y jZ = z; �), is the optimal forecast for the quad-quad

loss function; see, e.g. Newey and Powell (1987, p. 823) and Gneiting (2011a). Hence, the sample or-

thogonality condition in Equation (3) yields the sample least-squares regressions for the symmetric square

loss function, the sample least-absolute-deviation regressions for the symmetric absolute loss function, the

quantile regressions for the lin-lin loss and the expectile regressions for the quad-quad loss function.

Mincer and Zarnowitz (1969) used the forecast, ŷ = g (z; �), as vt in the orthogonality condition in

Equation (4) for the square-error loss and this boiled down to performing an ordinary least squared regression

on the following linear model:

yt+1 = �+ �ŷt+1 + "t+1 (5)

where "t+1 was an error term satisfying E ("t+1jzt) = 0. The unbiasedness and e¢ ciency of the forecast were

evaluated by testing the intercept and slope through the joint hypothesis,

H0 : � = 0 \ � = 1 (6)

Optimal forecast was characterized by the upholding (non-rejection) of H0.

Since the conditional quantile is the optimal forecast for the lin-lin loss function, one can perform the

� quantile regression for the model in Equation (5) with 0 < � < 1, and "t+1 such that F�1et+1 (�) = 0; the

optimality of the forecast can then be evaluated using the Wald-type test on the joint hypothesis:

H0 : � (�) = 0 \ � (�) = 1 (7)

where � (�) and � (�) are regression quantile estimates of the intercept and slope coe¢ cients.

Similarly, for the quad-quad loss function, the optimality of the forecast can be tested through the similar

joint hypothesis

H0 : � (!) = 0 \ � (!) = 1 (8)

using the !-expectile regression with 0 < ! < 1. Assuming the loss function used by a forecaster belongs to

one of the �exible lin-lin or quad-quad family, one can recover (back-out) the parameter of asymmetry by

selecting the � or ! which fails to reject the joint hypothesis in Equation (7) or Equation (8), respectively.
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This is coined as the MZ quantile/expectile regression approach to forecast optimality test in this paper.

We �rst provide the asymptotics for the Mincer-Zarnovitz (MZ) regression for completeness. Then, the

Mincer-Zarnovitz (MZ) quantile regression approach is presented in the following two subsections; similar

results can be obtained for the Mincer-Zarnovitz expectile regression approach.

3.1 The Original Mincer-Zarnovitz Regression

The original Mincer-Zarnovitz Regression considers linear models and uses a quardratic loss function, i.e.

the forecast decision is to choose � (�) = (�)2 with g (Z; �) = X 0� that minimizes the risk 1

EY jX

h
(Y �X 0�)

2
i
:

Given fZtgTt=1 = fYt; XtgTt=1, supposed that b� is estimated by
b� = argmin

�

TX
t=1

(Yt �X 0
t�)

2 (9)

and the n forecasts of fYtgT+nt=T+1 are constructed as

bYt = X 0
t
b�; t = T + 1; � � � ; T + n. (10)

The original Mincer-Zarnovitz regression approach involves performing an OLS regression of YT+i on bYT+i
for i = 1; � � � ; n, i.e. �b�; b�� = argmin

�;�

T+nX
t=T+1

�
Yt � �� � bYt�2 :

Theorem 1 below gives the asymptotic result for the OLS based Mincer-Zarnovitz regression estimator

based on a general forecastor g (Z; �).

For convenience of asymptotic analysis, the following assumptions are made:

Assumption O1: The data fYt; Xtg is generated by the model Yt = g(Xt; �) + "t.

Assumption O2: The n forecasts of fYtgT+nt=T+1 are constructed using Equation (10) where b� is estimated
by Equation (9).

Assumption O3. fXt; "tg is stationary �-mixing with mixing decay rate �t = O(b�t) for some b > 1.

EkZtk2+� <1, for some � > 0. limm!1Var
�
m�1=2Pm

t=1 "t
�
= �2" <1

Assumption O4. Both n and T approach 1, and n=T ! 0:

1The Z as de�ned in Section 2 consists of the historical realized values of the dependent and independent variables, Z =
fZtgTt=1 = fYt; XtgTt=1. In the regression setting of Mincer-Zarnovitz, the values of the dependent variable Yt in the data Zt
are used in the estimation of �.
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For notational convenience, the following are denoted:


 =

264 �

�

375 , b
 =
264 b�b�

375 , 
� =
264 0

1

375
Denote

�0 =

264 1 Eg (Xt; �)

Eg (Xt; �) Eg (Xt; �)
2

375
Theorem 1: Under Assumptions O1-O4, as n!1,

p
n (b
 � 
)) N

�
0; �2"�

�1
0

�
:

Result of Theorem 1 facilitate the OLS based Mincer-Zarnovitz inference.

3.2 The Mincer-Zarnovitz Quantile Regression

Suppose the forecaster uses an asymmetric lin-lin loss function. More speci�cally, the forecast decision is to

choose g (Z; �) that minimizes the risk

EY [�� (Y � g(X; �))]

where �� is the lin-lin loss function as speci�ed in Section 2 or better known as the "check" loss function in

the quantile regression literature.

Given fZtgTt=1 = fYt; XtgTt=1, it is supposed that b� = b�(�) is estimated by
b�(�) = argmin

�

TX
t=1

�� (Yt � g(Xt; �)) (11)

and the n forecasts of fYtgT+nt=T+1 are constructed as

bYt = g(Xt; b�(�)); t = T + 1; � � � ; T + n. (12)

The MZ quantile regression approach involves performing a quantile regression of YT+i on bYT+i for i =
1; � � � ; n, i.e. �b�(�); b� (�)� = argmin

�;�

T+nX
t=T+1

��

�
Yt � �� � bYt� :

The Mincer-Zarnovitz type analysis on the hypothesis that the forecasting is performed using an asymmetric

lin-lin loss function can then be tested based on the hypothesis stated in Equation (7). The theorem in the

13



next section provides a theoretical foundation for the Wald-type test.

3.3 Asymptotics of The Mincer-Zarnovitz Quantile Regression Analysis

For convenience of asymptotic analysis, the following assumptions are made:

Assumption 1: Denote the conditional quantile function of Yt, given existing information Ft, by

QYt (� jFt), and assume that QYt (� jFt) = QYt (� jXt) = g(Xt; � (�)).

Assumption 2: The n forecasts of fYtgT+nt=T+1 are constructed using Equation (12) where b�(�) is esti-
mated by Equation (11).

Assumption 3. fZtg is a stationary �-mixing with mixing decay rate �t = O(b�t) for some b > 1.

Assumption 4. Let Ft(�) and ft(�) be the conditional distribution function and density function of Yt

given Ft, respectively, and Ft(�) and ft(�) are continuously di¤erentiable while 0 < ft(�) <1 on its support.

Assumption 5. Both n and T approach 1, and n=T ! 0:

Assumptions 1 and 2 assume that the forecaster uses an asymmetric lin-lin loss function in the forecast,

and the true conditional quantile function is in the class of functions under consideration. Under Assumption

1, Pr (Yt � g(Xt; � (�))) = � . Assumption 3 ensures that the appropriate LLN and CLT apply to the sample

average. This is assumed for convenience of the asymptotic analysis and the identi�cation of the weakest

conditions is not attempted here. Assumption 5 assumes that the sample used for the estimation is larger

than the number of periods for prediction. Under this assumption, the preliminary estimation error is of

smaller order of magnitude than n�1=2 and, thus, not a¤ecting the limiting distribution of the MZ quantile

regression estimator.

For notational convenience, the following are denoted:


 =

264 �

�

375 , b
 (�) =
264 b�(�)b� (�)

375 , 
 (�) =
264 0

1

375
Zt(�) =

264 Z1t(�)

Z2t(�)

375 =
264 1

g(Xt; �)

375 .
Then the corresponding MZ quantile regression can be written as

b
 (�) = argmin



T+nX
t=T+1

��

�
Yt � 
>Zt(b� (�))� : (13)
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Theorem 2: Under Assumptions 1-5, as n!1,

p
n (b
(�)� 
(�))) N

�
0;
�11 
0


�1
1

�
;

where


0 = E

264 1 QYt(� jXt)

QYt(� jXt) QYt(� jXt)
2

375 ;
and


1 = E

264 ft(QYt(� jXt)) ft(QYt(� jXt))QYt(� jXt)

ft(QYt(� jXt))QYt(� jXt) ft(QYt(� jXt))QYt(� jXt)
2

375 :
While Theorem 1 facilitates the hypothesis expressed in Equation (6), Theorem 2 allows testing of the

hypothesis expressed in Equation (7).

4 Illustration of theMincer-Zarnowitz Quantile/Expectile Regres-

sions Optimality Test

To illustrate the MZ quantile/expectile regression approach, n+K = 300 observations were �rst generated

using DGP1 of Section 2.1. The �rst n = 100 of these observations were used as the in-sample data which

served as the basis for future forecasts constructed by Equation (12) using quantile regression estimates

obtained through Equation (11) to simulate the lin-lin loss function adopted by a forecaster. The remaining

K = 200 observations were used as the 200 realized observations fyt+1gKt=1 in the hold�out sample for which

the forecasts were targeting. Speci�cally, nine sets of K = 200 forecasts fŷt+1gKt=1 were constructed using

Equation (12) through nine rolling quantile regression �ts of Equation (11) to the in-sample data, one for

each of �f 2 f0:1; 0:2; � � � ; 0:8; 0:9g, to simulate nine di¤erent lin-lin lost functions used by the forecaster, each

parameterized by the asymmetry parameter �f . Hence, there were 200 pairs of predictions and realizations

fyt+1; ŷt+1gKt=1 for each of the nine �f 2 f0:1; 0:2; � � � ; 0:8; 0:9g. To try to recover the actual �f used in one of

the nine asymmetric lin-lin loss functions that generated the forecast,fŷt+1gKt=1, nine MZ quantile regressions

of Equation (5) with �MZ 2 f0:1; 0:2; � � � ; 0:8; 0:9g were performed using each of the nine sets of predictions

and realizations pairs fyt+1; ŷt+1gKt=1. It was expected that the MZ quantile regression with �MZ that was

equal to the corresponding �f in Equation (11) that generated the forecasts to be closest to the 45o line and

to result in not rejecting the null hypothesis in Equation (7).

Figure 1 shows the results of the nine �MZ 2 f0:1; 0:2; � � � ; 0:8; 0:9gMZ-quantile regression �ts of Equation

(5) for four selected �f 2 f0:2; 0:4; 0:6; 0:8g quantile regressions of Equation (11) which were subsequently
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used in generating the forecasts in Equation (12) for DGP1. The red line represents the 45o line, the green

line is the ordinary least-squares regression line, and the blue line is the �MZ = �f quantile regression line

when the recovered �MZ matches exactly the �f that is used in generating the forecast while the grey lines

are the �MZ quantile regression �ts when �MZ 6= �f . Figure 2 shows similar results of expectile regressions

for Equation (5) for !f 2 f0:2; 0:4; 0:6; 0:8g to illustrate the case when the quad-quad loss function instead

of the lin-lin loss function was used in generating the forecasts in Equation (12) for DGP1. Again the red

line represents the 45o line, the green line is the ordinary least-squares regression line, and the blue line

is the !MZ = !f expectile regression line while the grey lines are the !MZ expectile regression �ts when

!MZ 6= !f . Figure 3 and Figure 4 show the results for the quantile regressions and expectile regressions,

respectively, for DGP4.

It can be seen that both the �MZ-quantile regressions and !MZ-expectile regressions of yt+1 on ŷt+1 track

the 45o line closely when �MZ = �f or !MZ = !f while the ordinary least-squares regression line deviates

from the 45o line in general except when �f = 0:5 or !f = 0:5 which are not shown in the �gures.

5 Simulations of Mincer-Zarnowitz Quantile/Expectile Regression

Optimality Test

To see how the MZ quantile/expectile regression approach performs when applied to the lin-lin and quad-

quad loss function, simulations were performed for the various DGPs depicted in Section 2.1. The size of the

in-sample data used in the �rst-stage estimation of the various �f 2 f0:1; 0:2; � � � ; 0:8; 0:9g quantile regressions

in Equation (11) was n 2 f100; 200; 400g. These estimated �f -quantile regressions were subsequently used

to perform forecasts for the K = N � n 2 f100; 200; 400g hold-out periods through Equation (12).

Each of the subsequent plots in Figure 5 to Figure 9 show the percentage of the NMC = 100 Monte

Carlo replications in which the H0 in (7) was not rejected for the various combinations of n, K, �MZ , �f ,

and DGP1 through DGP5 for the MZ quantile regression of Equation (5).

In general, the percentage of non-rejection is the highest when �MZ = �f as one will expect. The sample

size n used in the �rst-stage in-sample estimation does not have as signi�cant an impact as the sample size

K in the second hold-out stage on the percentage of "correct" guess of the weight, �f , used in the forecasts

in the lin-lin loss function. This is to be expected for the consistency of the test in the second-stage relies

on the sample size K in the second-stage. Results are qualitatively similar for the MZ expectile regression

approach. Due to space constraint, the detailed results are not presented here but they are available from

the authors upon request.

16



Hence, the MZ quantile/expectile approach that �nds the �MZ (!MZ) quantile (expectile) regression for

which H0 in (7) ((8)) is not being rejected provides a reliable way to recover the weight, �f (!f ), used in the

lin-lin (quad-quad) loss function of the forecaster.

5.1 Robustness Against Model Misspeci�cations

To study how robust is the MZ quantile/expectile regression approach to forecast optimality test against

model misspeci�cations in Equation (11), two simulations were performed based on two augmentations of

the DGPs introduced in Section 2.1: (1) The DGPs were augmented with an additional linear term 
xt

where 
 = 1 and xt � �2 (10) was i.i.d. from a chi-square distribution with ten degrees of freedom and (2)

the DGPs were augmented with an additional nonlinear term 
x2t where 
 = 1 and xt � �2 (10).

The percentages of non-rejection of H0 in (7) for both the quantile regression model in Equation (11) used

in the forecasts without the augmented xt (misspeci�ed model) and for the model with the �rst augmented

linear term 
xt (correctly speci�ed model) for the augmented DGP1 are presented in Figure 14 and Figure

15 in Appendix 1, respectively while those for the augmented DGP3 are presented in Figure 16 and Figure

17, respectively. The results for the augmented DGP2, DGP4 and DGP5 are similar and, hence, are not

presented in this paper. The results for the expectile regressions are qualitatively similar and are not reported

here either.

For the second simulation where DGP1 was augmented with the additional non-linear term 
x2, the

results are presented in Figure 18 and Figure 19, respectively, in Appendix 1 for the misspeci�ed and

correctly speci�ed stage 1 quantile regressions while Figure 20 and Figure 21, respectively, in Appendix 1

present those for DGP3.

One can see that the MZ quantile/expectile regression approach is quite robust to misspeci�cations in

the regression equation in terms of missing variables for the high percentages of non-rejection cluster around

the diagonals when �MZ = �f and !MZ = !f .

5.2 Robustness Against Misspeci�cation in the Loss Functions

Even though the majority of the forecasts in applied research have been generated using the quantile re-

gression rather the expectile regression as summarized in Section 1, one still has to assume the class of loss

function that has been employed by a forecaster to recover (estimate) the parameter which controls the

degree of asymmetric in the loss function employed by the forecaster. We have demonstrated how e¤ective

the MZ quantile/expectile regression approach is in recovering the asymmetric parameter when the class

of loss function used is assumed to be known. However, there is still the question: �How robust is the
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MZ quantile/expectile approach in recovering the asymmetric parameter when the loss function used by a

forecaster is misspeci�ed?�

To investigate this, we modi�ed the simulations described in Section 5 in the following ways: (1) Forecasts

were generated using the �f 2 f0:1; 0:2; � � � ; 0:8; 0:9g quantile regressions for the DGPs speci�ed in Section

2.1 but the asymmetric parameter �f was incorrectly estimated using the !MZ 2 f0:1; 0:2; � � � ; 0:8; 0:9g MZ

expectile regressions of (5); (2) Forecasts were generated using the !f 2 f0:1; 0:2; � � � ; 0:8; 0:9g expectile re-

gressions but the asymmetric parameter !f was mistakenly estimated using the �MZ 2 f0:1; 0:2; � � � ; 0:8; 0:9g

MZ quantile regressions. Again, due to space constraint, only the results for the �rst set of simulations for

DGP1 and DGP3 are presented in Figure 22 to Figure 23 in Appendix 1 while those for the second set are

presented in Figure 24 to Figure 25 also in Appendix 1. The results for the other DGPs are available upon

request from the authors.

It is obvious that the misspeci�cations of the loss function introduce bias in the recovered asymmetric

parameters for the assumed loss functions in both sets of simulations. For the �rst set of simulations when

the quantile regressions were used to generate the forecasts but the !MZ expectile regressions were used to

estimate the asymmetric parameters �f , the !MZ expectile regressions overestimated �f for �f < 0:5 but

underestimated for �f > 0:5 for DGP1 and DGP3 as shown in Figure 22 and 23. On the other hand, for

the second set of simulations when the !f expectile regressions were used to generate the forecasts but the

�MZ quantile regressions were used to estimate the asymmetric parameters !f , the �MZ quantile regression

underestimated !f for !f < 0:5 but overestimated for !f > 0:5 for DGP1 and DGP3 as shown in Figure 24

and Figure 25. Results are qualitatively similar for DGP2, DGP4 and DGP5.

There is yet another question: �How robust is the MZ quantile/expectile approach when the

DGPs in Section 2.1 are characterized by distributions other than the Gaussian?�We did not

perform simulations on this aspect. However, we conjecture that the MZ quantile approach will

be robust for any distribution while the expectile approach should still be somewhat reliable

as long as the distribution does not have overly heavy tails so that the �rst moment can be

estimated consistently and e¢ ciently based on what we have learned from robust statistics.

6 Applications

In this section, the MZ quantile/expectile regression approach was applied to try to recover the asymmetric

parameter in the potentially asymmetric loss functions used in the Federal Reserves�forecasting of economic

variables and the forecasting of an electronic component manufacturer�s demand in its supply chain.
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6.1 The Federal Reserve�s Greenbook Forecast

The report "Current Economical and Financial Conditions: Summary and Outlook" prepared by the Board of

Governors of the Federal Reserve System for the Federal Open Market Committee Meeting is viewed by many

as the authoritative forecast of the important economic variables such as GDP, in�ation rate, unemployment

rate, etc. It is also known as the Greenbook. Many studies have been done using the Greenbook forecasts

and found that the forecasts were not optimal. The question though is whether the Greenbook forecasts are

really suboptimal or they are in fact optimal for an asymmetric loss function used by the Federal Reserves.

Similar to Patton and Timmermman (2007), the real GDP and the Federal Reserves�forecast from the

�rst quarter of 1969 to the �rst quarter of 2000 were used here. Figure 10 presents the recovered asymmetric

parameter � used in the Federal Reserve�s Greenbook forecasts using the quantile regression approach while

Figure 11 shows the asymmetric parameter ! recovered using the expectile regression. The ordinary least

squares regression rejects the null hypothesis in (6) and, hence, the Greenbook�s forecast is deemed not

optimal if one assumes that the Federal Reserves actually used the square loss decision function. The MZ

quantile regression approach fails to reject the null in (7) for � 2 f:30; :35; :40; :45g while the expectile

regression fails to reject the null in (8) for ! 2 f:35; :40; :45g. Using the quantile regression estimates, the

ratio of optimal loss on negative errors to positive errors, L (�e) =L (e) = (1� �) =� , is between 1:22 and

2:33 while the ratio derived from the expectile regression estimates falls between 1:22 and 1:86. Patton

and Timmermman�s (2007) average estimated ratio was 1.44 with a minimum of 0.52 and a maximum of

2.76 when the loss function did not depend on the forecasts, and the average was 3.48, 1.97, and 1.26 for

the 0.25, 0.5, and 0.75 quantiles of the real GDP growth, respectively, when the loss function depended on

the forecasts. So the general picture of the inference using the MZ quantile/expectile regression approach

is consistent with what Patton and Timmermman (2007) found: the Federal Reserves appeared to value

overprediction roughly 1:5 times more costly than underprediction.

6.2 An Electronic Component Manufacturer Supply Chain

Data of an electronic component manufacturer in the U.S. were available on the actual shipment (yt+h) and

one-month through twelve-month ahead (h = 1; � � � ; 12) forecasts (ŷt+h) for 106 stock-keeping units (SKU)

in 19 product families (FAM) processed at 4 global business units (GBU) and 6 distribution hubs (HUB)

across 3 regions (REG) over the globe. Only the combinations of SKU, FAM, GBU, HUB and REG with

at least 30 usable observations were analyzed. There were altogether 90 such combinations. Among these

combinations, the incomplete observations with zero actual shipment were dropped from the analysis even

though there were positive forecasts.

19



The recovered asymmetric parameter of the lin-lin loss function and quad-quad loss function at the one-

month through twelve-month forecast horizons using the MZ quantile/expectile approach are presented in

the histograms in Figure 12 and Figure 13, respectively. One can see from both �gures that the recovered

asymmetric parameters for both loss functions have values scattered around � = 0:8 and ! = 0:8 for all

the di¤erent forecast horizons. The global median of the median � at each of the twelve forecast horizons

is 0:8 and so is the global median of the median ! across the various horizons. The global mean of the

mean � at the various forecast horizons is 0:78 while the global mean of the mean ! is 0:76. This suggests

that the manufacturer weighs positive forecast errors (under forecasts) about four times (L (e) =L (�e) =

�= (1� �) = 0:8=0:2 = 4) as costly as negative forecast errors (over forecasts). Under forecasts will lead

to unful�lled order, which could lead to loss of goodwill, reputations, and loss of current and future sales

while over forecasts will result in over inventory, higher insurance costs, and tied up capital. In this case,

the manufacturer views under forecasts more costly than over forecasts.

7 Conclusions

Forecasts are ubiquitous in all areas of daily life. Typical summary metrics used in measuring forecast

performance are the sample root-mean-square error and the mean-absolute error. However, these popular

summary metrics are appropriate only for the symmetric mean-square error and mean-absolute error loss

functions used by the forecasters. This paper has argued and demonstrated that when forecasters use an

asymmetric loss function such as the lin-lin or quad-quad lost functions, the appropriate summary metrics

for measuring forecast performance should, instead, be the sample mean-weighted-absolute error and mean-

weighted-square error, respectively, that re�ect the di¤erent weights assigned to over and underprediction.

However, to correctly utilize the sample mean-weighted-absolute error and mean-weighted-square error,

one will need to know the relative weights for over and underprediction that a forecaster assigned when

performing the forecasts. These weights that characterize the asymmetric loss functions can be recovered

in the recommended MZ quantile/expectile regression approach.

Regarding the task of evaluation of forecast optimality, theoretical justi�cation is provided for extending

Mincer and Zarnowitz (1969) prediction-realization framework that is based on the ordinary least-squares

regression to one that uses the quantile regressions and expectile regressions. Simulation results demon-

strating the e¢ cacy of the proposed MZ quantile/expectile regression approach are provided and show that

this approach is robust to speci�c forms of model misspeci�cation in the data generating process. This ap-

proach is not robust to misspeci�cation in the loss functions, especially for the near unit root data generating
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processes. However, Gneiting (2011a) argued that:

e¤ective point forecasting depends on �guidance�or �directives,�which can be given in one of two

complementary ways, namely, by disclosing the scoring function ex ante to the forecaster, or by

requesting a speci�c functional of the forecaster�s predictive distribution, such as the mean or a

quantile.... An alternative to disclosing the scoring function is to request a speci�c functional of

the forecaster�s predictive distribution, such as the mean or a quantile, and to apply any scoring

function that is consistent with the functional, roughly in the following sense. (748-9)

Hence, if one is to evaluate the optimality of a forecast but has no information about the form of the loss

function being used, one should request for such information and use a summary metric (scoring function)

that is consistent with the elicited loss function instead of cavalierly using the traditional tests for forecast

optimality that rely on the symmetric loss functions and concluding that the forecast is suboptimal.

The MZ quantile/expectile regression approach is then applied to Federal Reserve�s Greenbook forecast

and the forecast of an electronic component manufacturer�s demand in its supply chain. It has been found that

the Federal Reserve appeared to value overprediction roughly 1.5 times more costly than underprediction.

It has also been found that the electronic component manufacturer appeared to weigh under forecast about

four times as costly as over forecast.

Finally, we feel that even though we have introduced and demonstrated how both the

quantile and expectile approahces work in recovering the unknown parameter that controls

the potentially asymmetric loss function used in generating forecasts, we have the obligation

to warn the readers about the potential issues that could be encountered when using the

expectile approach. In this respect, no one has done a better job than Koenker (2013) in his

discussion of the article �Beyond mean regression�by Kneib (2013):

Many aspects of the case against expectiles are familiar: they are slippery, although they seek to

describe a local property of a distribution, they depend on global properties of that distribution;

they are inherently nonrobust, by manipulating the tails of the distribution one can make the

expectiles dance at your will; and they are not equivariant to monotone transformations as are

the quantiles. I could rest my case here, but why?-when we are having fun. (327)

Advocating the values of expectile, Waltrup et al. (2015) argued that:

Apparently, referring again to the comparison of expectiles and quantiles to David and Goliath

is undissolved. There is no �nal �ght, and research on both ends continues. It is certainly true

that quantiles are dominant in the literature but we wanted to show that expectiles are an
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interesting alternative to quantiles and that their combined use is helpful, in particular, for the

estimation of the ES ....

All in all, we hope to have convinced the reader that expectiles do not immediately ¿belong

in the spittoon¿ as Koenker (2013a) provocatively postulates. We think that expectiles provide

an interesting and worthwhile alternative to the well-established quantile regression. (452-53)

Whether the expectile approach belongs in the spittoon, we will leave that decision to the

readers.
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line, the green line is the ordinary least-squares regression line, and the blue line is the �MZ = �f quantile
regression line when the recovered �MZ matches exactly the �f that is used in generating the forecast while
the grey lines are the �MZ quantile regression �ts when �MZ 6= �f .

Figure 2: A single realization of the MZ expectile regressions for DGP1. The red line represents the 45o

line, the green line is the ordinary least-squares regression line, and the blue line is the !MZ = !f expectile
regression line while the grey lines are the !MZ expectile regression �ts when !MZ 6= !f .
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Figure 3: A single realization of the MZ quantile regressions for DGP4. The red line represents the 45o

line, the green line is the ordinary least-squares regression line, and the blue line is the �MZ = �f quantile
regression line when the recovered �MZ matches exactly the �f that is used in generating the forecast while
the grey lines are the �MZ quantile regression �ts when �MZ 6= �f .
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Table 1: Sample MWAE and RMSE for the quantile regression and arima �ts under the various DGPs.
The boxed numbers correspond to the w that yields the smallest MWAE for the various � in the quantile
regression �ts.

MWAE
DGPs w RMSE

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.16 1.92 2.67 3.43 4.18 4.93 5.69 6.44 7.20 4.93
0.2 1.29 1.80 2.31 2.83 3.34 3.85 4.36 4.88 5.39 4.07
0.3 1.60 1.90 2.20 2.50 2.79 3.09 3.39 3.69 3.98 3.45
0.4 2.01 2.14 2.28 2.41 2.55 2.68 2.82 2.95 3.09 3.18

DGP1 0.5 2.58 2.55 2.51 2.48 2.45 2.42 2.39 2.36 2.32 3.12
0.6 3.25 3.07 2.88 2.70 2.52 2.34 2.16 1.98 1.79 3.24
0.7 4.07 3.74 3.41 3.08 2.75 2.42 2.09 1.76 1.43 3.50
0.8 5.31 4.79 4.27 3.75 3.24 2.72 2.20 1.68 1.17 4.04
0.9 6.96 6.22 5.48 4.75 4.01 3.27 2.53 1.79 1.05 4.84
arima 2.49 2.49 2.48 2.48 2.47 2.47 2.46 2.46 2.45 3.13

0.1 1.15 1.89 2.62 3.36 4.10 4.84 5.57 6.31 7.05 4.84
0.2 1.27 1.76 2.26 2.75 3.25 3.74 4.23 4.73 5.22 3.97
0.3 1.53 1.86 2.19 2.53 2.86 3.19 3.52 3.85 4.19 3.53
0.4 1.93 2.10 2.26 2.42 2.58 2.75 2.91 3.07 3.24 3.20

DGP2 0.5 2.46 2.47 2.49 2.51 2.53 2.54 2.56 2.58 2.60 3.12
0.6 3.17 3.03 2.89 2.75 2.61 2.47 2.33 2.19 2.05 3.22
0.7 4.18 3.86 3.53 3.20 2.87 2.55 2.22 1.89 1.56 3.54
0.8 5.50 4.97 4.43 3.89 3.36 2.82 2.28 1.75 1.21 4.13
0.9 7.37 6.58 5.79 5.00 4.20 3.41 2.62 1.83 1.04 5.04
arima 2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 3.13

0.1 1.15 1.88 2.61 3.34 4.08 4.81 5.54 6.27 7.00 4.85
0.2 1.29 1.79 2.29 2.80 3.30 3.81 4.31 4.82 5.32 4.08
0.3 1.61 1.90 2.20 2.49 2.78 3.07 3.36 3.65 3.95 3.49
0.4 1.96 2.10 2.25 2.39 2.54 2.68 2.83 2.97 3.12 3.26

DGP3 0.5 2.46 2.46 2.46 2.45 2.45 2.45 2.45 2.44 2.44 3.17
0.6 3.13 2.98 2.82 2.67 2.52 2.36 2.21 2.06 1.90 3.24
0.7 3.92 3.62 3.32 3.02 2.73 2.43 2.13 1.83 1.53 3.48
0.8 5.08 4.61 4.13 3.65 3.18 2.70 2.22 1.75 1.27 3.96
0.9 7.37 6.59 5.81 5.03 4.25 3.47 2.69 1.90 1.12 5.06
arima 2.46 2.46 2.46 2.46 2.46 2.47 2.47 2.47 2.47 3.18

0.1 1.43 2.44 3.45 4.46 5.47 6.47 7.48 8.49 9.50 6.46
0.2 1.61 2.25 2.89 3.53 4.17 4.81 5.45 6.09 6.73 5.06
0.3 2.06 2.43 2.80 3.16 3.53 3.90 4.27 4.64 5.00 4.29
0.4 2.75 2.87 2.99 3.12 3.24 3.36 3.48 3.61 3.73 4.05

DGP4 0.5 3.57 3.46 3.36 3.26 3.15 3.05 2.94 2.84 2.73 4.03
0.6 4.23 3.97 3.70 3.43 3.16 2.90 2.63 2.36 2.10 4.14
0.7 5.12 4.68 4.25 3.82 3.39 2.96 2.52 2.09 1.66 4.48
0.8 6.32 5.70 5.08 4.46 3.84 3.22 2.60 1.98 1.36 5.00
0.9 8.32 7.44 6.55 5.67 4.78 3.90 3.01 2.13 1.24 5.91
arima 3.16 3.16 3.16 3.15 3.15 3.15 3.15 3.14 3.14 3.93

0.1 0.78 1.33 1.87 2.42 2.97 3.51 4.06 4.61 5.15 3.73
0.2 0.83 1.24 1.66 2.07 2.49 2.91 3.32 3.74 4.15 3.25
0.3 0.99 1.30 1.61 1.92 2.24 2.55 2.86 3.17 3.49 2.96
0.4 1.25 1.45 1.64 1.84 2.04 2.24 2.44 2.64 2.83 2.68

DGP5 0.5 1.59 1.68 1.78 1.87 1.97 2.06 2.16 2.25 2.35 2.53
0.6 2.21 2.16 2.11 2.07 2.02 1.97 1.93 1.88 1.84 2.52
0.7 2.96 2.77 2.58 2.39 2.20 2.01 1.82 1.63 1.44 2.68
0.8 4.13 3.76 3.38 3.01 2.64 2.26 1.89 1.51 1.14 3.14
0.9 6.22 5.56 4.91 4.25 3.60 2.94 2.28 1.63 0.97 4.16
arima 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.54
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Table 2: Sample MWSE and RMSE for the expectile regression and arima �ts under the various DGPs.
The boxed numbers correspond to the w that yields the smallest MWSE for the various ! in th expectile
regression �ts.

MWSE
DGPs w RMSE

! 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 5.33 8.10 10.87 13.64 16.42 19.19 21.96 24.73 27.50 4.05
0.2 5.97 7.55 9.13 10.71 12.29 13.87 15.45 17.03 18.61 3.51
0.3 7.07 7.94 8.81 9.68 10.55 11.42 12.29 13.16 14.03 3.25
0.4 8.47 8.79 9.12 9.44 9.76 10.09 10.41 10.73 11.05 3.12

DGP1 0.5 10.18 10.02 9.87 9.71 9.55 9.40 9.24 9.08 8.93 3.09
0.6 12.31 11.69 11.06 10.44 9.81 9.19 8.56 7.94 7.31 3.13
0.7 15.14 14.00 12.87 11.74 10.60 9.47 8.34 7.20 6.07 3.26
0.8 19.34 17.57 15.79 14.02 12.24 10.46 8.69 6.91 5.14 3.50
0.9 27.14 24.33 21.52 18.71 15.90 13.09 10.28 7.47 4.66 3.99
arima 10.48 10.31 10.13 9.95 9.77 9.60 9.42 9.24 9.06 3.13

0.1 5.16 7.96 10.76 13.56 16.35 19.15 21.95 24.75 27.55 4.04
0.2 5.76 7.42 9.08 10.74 12.39 14.05 15.71 17.36 19.02 3.52
0.3 6.83 7.80 8.77 9.74 10.71 11.67 12.64 13.61 14.58 3.27
0.4 8.19 8.62 9.05 9.48 9.91 10.34 10.77 11.19 11.62 3.15

DGP2 0.5 9.90 9.84 9.78 9.72 9.67 9.61 9.55 9.49 9.43 3.11
0.6 12.10 11.55 11.00 10.45 9.90 9.35 8.80 8.25 7.70 3.15
0.7 15.10 14.00 12.90 11.80 10.70 9.60 8.50 7.40 6.29 3.27
0.8 19.57 17.77 15.98 14.18 12.39 10.59 8.80 7.00 5.21 3.52
0.9 27.76 24.87 21.97 19.08 16.18 13.29 10.39 7.50 4.60 4.02
arima 10.06 10.00 9.93 9.87 9.80 9.74 9.67 9.61 9.54 3.13

0.1 5.45 8.29 11.12 13.96 16.79 19.63 22.46 25.30 28.13 4.10
0.2 6.04 7.70 9.36 11.02 12.68 14.34 16.00 17.66 19.32 3.56
0.3 7.10 8.06 9.01 9.96 10.91 11.87 12.82 13.77 14.73 3.30
0.4 8.43 8.85 9.27 9.68 10.10 10.52 10.93 11.35 11.76 3.18

DGP3 0.5 10.08 10.02 9.96 9.90 9.85 9.79 9.73 9.67 9.61 3.14
0.6 12.19 11.66 11.13 10.60 10.06 9.53 9.00 8.47 7.93 3.17
0.7 15.05 14.00 12.94 11.88 10.83 9.77 8.72 7.66 6.61 3.29
0.8 19.41 17.68 15.95 14.23 12.50 10.77 9.04 7.31 5.58 3.54
0.9 28.08 25.19 22.31 19.43 16.55 13.67 10.79 7.90 5.02 4.07
arima 10.27 10.23 10.19 10.16 10.12 10.08 10.04 10.01 9.97 3.18

0.1 8.25 12.88 17.51 22.13 26.76 31.39 36.02 40.65 45.28 5.17
0.2 9.26 11.86 14.45 17.05 19.64 22.24 24.84 27.43 30.03 4.43
0.3 11.13 12.52 13.91 15.29 16.68 18.07 19.45 20.84 22.23 4.08
0.4 13.53 13.98 14.44 14.89 15.35 15.80 16.26 16.72 17.17 3.92

DGP4 0.5 16.42 16.06 15.70 15.34 14.98 14.62 14.26 13.90 13.54 3.87
0.6 19.87 18.74 17.62 16.49 15.37 14.24 13.11 11.99 10.86 3.92
0.7 24.14 22.24 20.33 18.42 16.51 14.61 12.70 10.79 8.89 4.06
0.8 30.08 27.25 24.43 21.60 18.77 15.95 13.12 10.30 7.47 4.33
0.9 40.74 36.49 32.25 28.00 23.75 19.50 15.25 11.00 6.76 4.87
arima 16.88 16.52 16.16 15.79 15.43 15.07 14.71 14.35 13.99 3.93

0.1 2.85 4.68 6.50 8.33 10.16 11.98 13.81 15.64 17.46 3.19
0.2 3.04 4.30 5.55 6.81 8.06 9.32 10.57 11.83 13.08 2.84
0.3 3.53 4.41 5.28 6.16 7.03 7.91 8.78 9.66 10.54 2.65
0.4 4.25 4.80 5.36 5.92 6.48 7.04 7.59 8.15 8.71 2.55

DGP5 0.5 5.22 5.48 5.73 5.99 6.24 6.50 6.75 7.01 7.26 2.50
0.6 6.57 6.50 6.44 6.37 6.31 6.24 6.18 6.11 6.05 2.51
0.7 8.50 8.06 7.63 7.19 6.76 6.33 5.89 5.46 5.02 2.60
0.8 11.61 10.68 9.75 8.81 7.88 6.95 6.02 5.09 4.16 2.81
0.9 17.85 16.07 14.29 12.50 10.72 8.94 7.16 5.38 3.60 3.27
arima 5.63 5.83 6.04 6.24 6.44 6.65 6.85 7.06 7.26 2.54
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Figure 4: A single realization of the MZ expectile regressions for DGP4. The red line represents the 45o

line, the green line is the ordinary least-squares regression line, and the blue line is the !MZ = !f expectile
regression line while the grey lines are the !MZ expectile regression �ts when !MZ 6= !f .

Figure 5: Percentage of the total number of replications (NMC) that fails to reject H0 for DGP1. The in-
sample data sizes are n 2 [100; 200; 400] while the hold-out sample sizes are K 2 [100; 200; 400]. The quantile
regressions for Equation (11) are performed for �f 2 [0:1; 0:2; � � � ; 0:8; 0:9] which are subsequently used to
perform forecast using Equation (12) while the MZ quantile regressions for Equation (5) are performed for
�MZ 2 [0:1; 0:2; � � � ; 0:8; 0:9] .

Figure 6: Percentage of the total number of replications (NMC) that fails to reject H0 for DGP2. The in-
sample data sizes are n 2 [100; 200; 400] while the hold-out sample sizes are K 2 [100; 200; 400]. The quantile
regressions for Equation (11) are performed for �f 2 [0:1; 0:2; � � � ; 0:8; 0:9] which are subsequently used to
perform forecasts using Equation (12) while the MZ quantile regressions for Equation (5) are performed for
�MZ 2 [0:1; 0:2; � � � ; 0:8; 0:9] .

Figure 7: Percentage of the total number of replications (NMC) that fails to reject H0 for DGP3. The in-
sample data sizes are n 2 [100; 200; 400] while the hold-out sample sizes are K 2 [100; 200; 400]. The quantile
regressions for Equation (11) are performed for �f 2 [0:1; 0:2; � � � ; 0:8; 0:9] which are subsequently used to
perform forecasts using Equation (12) while the MZ quantile regressions for Equation (5) are performed for
�MZ 2 [0:1; 0:2; � � � ; 0:8; 0:9] .

Figure 8: Percentage of the total number of replications (NMC) that fails to reject H0 for DGP4. The in-
sample data sizes are n 2 [100; 200; 400] while the hold-out sample sizes are K 2 [100; 200; 400]. The quantile
regressions for Equation (11) are performed for �f 2 [0:1; 0:2; � � � ; 0:8; 0:9] which are subsequently used to
perform forecasts using Equation (12) while the MZ quantile regressions for Equation (5) are performed for
�MZ 2 [0:1; 0:2; � � � ; 0:8; 0:9] .

Figure 9: Percentage of the total number of replications (NMC) that fails to reject H0 for DGP5. The in-
sample data sizes are n 2 [100; 200; 400] while the hold-out sample sizes are K 2 [100; 200; 400]. The quantile
regressions for Equation (11) are performed for �f 2 [0:1; 0:2; � � � ; 0:8; 0:9] which are subsequently used to
perform forecasts using Equation (12) while the MZ quantile regressions for Equation (5) are performed for
�MZ 2 [0:1; 0:2; � � � ; 0:8; 0:9] .

Figure 10: Mincer-Zarnowitz quantile regression estimates of the asymmetric parameter used in the Federal
Reserve�s Greenbook forecast.

Figure 11: Mincer-Zarnowitz expectile regression estimates of the asymmetric parameter used in the Federal
Reserve�s Greenbook forecast.
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Figure 12: Histogram of the asymmetric parameter of the lin-lin loss function recovered by the MZ quantile
regression approach.

Figure 13: Histogram of recovered asymmetric parameter of the quad-quad loss function recovered by the
MZ expectile regression approach.

Appendix 1

Figure 14: Percentage of non-rejections of H0 for the misspeci�ed quantile regressions used in the forecast
in Equation (11) for DGP1 augmented with an linear term 
xt.
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Figure 15: Percentage of non-rejections of H0 for the correctly speci�ed quantile regressions used in the
forecast in Equation (11) for DGP1 augmented with an linear term 
xt.

Figure 16: Percentage of non-rejections of H0 for the incorrectly speci�ed quantile regressions used in the
forecast in Equation (11) for DGP3 augmented with an linear term 
xt.
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Figure 17: Percentage of non-rejections of H0 for the correctly speci�ed quantile regressions used in the
forecast in Equation (11) for DGP3 augmented with an linear term 
xt.

Figure 18: Percentage of non-rejections of H0 for the misspeci�ed quantile regressions used in the forecast
in Equation (11) for DGP1 augmented with a nonlinear term 
x2t .

Figure 19: Percentage of non-rejections of H0 for the correctly speci�ed quantile regressions used in the
forecast in Equation (11) for DGP1 augmented with a nonlinear term 
x2t .

Figure 20: Percentage of non-rejections of H0 for the misspeci�ed quantile regressions used in the forecast
in Equation (11) for DGP3 augmented with a nonlinear term 
x2t .

Figure 21: Percentage of non-rejections of H0 for the correctly speci�ed quantile regressions used in the
forecast in Equation (11) for DGP3 augmented with a nonlinear term 
x2t .

Figure 22: Percentage of non-rejections of H0 when the forecasts were generated using the �f 2
f0:1; 0:2; � � � ; 0:8; 0:9g quantile regressions for DGP1 while the asymmetric parameter �f was estimated using
the !MZ 2 f0:1; 0:2; � � � ; 0:8; 0:9g MZ expectile regressions.

Figure 23: Percentage of non-rejections of H0 when the forecasts were generated using the �f 2
f0:1; 0:2; � � � ; 0:8; 0:9g quantile regressions for DGP3 while the asymmetric parameter �f was estimated using
the !MZ 2 f0:1; 0:2; � � � ; 0:8; 0:9g MZ expectile regressions.

Figure 24: Percentage of non-rejections of H0 when the forecasts were generated using the !f 2
f0:1; 0:2; � � � ; 0:8; 0:9g expectile regressions for DGP1 while the asymmetric parameter !f was estimated
using the �MZ 2 f0:1; 0:2; � � � ; 0:8; 0:9g MZ quantile regressions.

Figure 25: Percentage of non-rejections of H0 when the forecasts were generated using the !f 2
f0:1; 0:2; � � � ; 0:8; 0:9g expectile regressions for DGP3 while the asymmetric parameter !f was estimated
using the �MZ 2 f0:1; 0:2; � � � ; 0:8; 0:9g MZ quantile regressions.
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Appendix 2
Proof of Theorem 2

Denote

Gn(
; �) =
1

n

T+nX
t=T+1

 � (Yt � 
>Zt (�))Zt (�) ;

where  � (u) = � � I(u < 0), and let

G(
; �) = E
�
 � (Yt � 
>Zt (�))Zt (�)

�
:

By the Law of Iterated Expectations

G(
; �) = E
��
� � Ft(
>Zt (�))

	
Zt (�)

�
where Ft(�) and ft(�) are the conditional distribution function and density function of Yt given Ft.

Under our conditions, the asymptotic behavior of the MZ quantile regression estimator b
 (�) is the same
as that of argmin
 kGn(
; b� (�))k, and 
(�) solves min
 kG(
; � (�))k.
We �rst establish

p
n-consistency of b
 (�) to 
 (�). Let
�1(
; �) =

@G(
; �)

@

= �E

h
ft(


>Zt (�))Zt (�)Zt (�)
>
i
;

and

�10 = �1(
; �)j
=
(�);�=�(�) :

Under our regularity assumptions, �1(
; �) is continuous at 
 = 
 (�) and �10 is nonsingular; thus, there

exists a constant C > 0 such that Ckb
 (�) � 
 (�) k is bounded by kG(b
 (�) ; � (�))k with probability going
to 1.

De�ne

�2(
; �) =
@G(
; �)

@�>
:
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Notice that kG(
 (�) ; � (�))k = 0 and kGn(
 (�) ; � (�))k = Op(n
�1=2). By the triangle inequality we have

kG(b
 (�) ; � (�))k
� kG(b
 (�) ; � (�))�G(b
 (�) ; b�(�))k (14)

+ kG(b
 (�) ; b�(�))�G(
 (�) ; �(�))�Gn(b
 (�) ; b�(�)) +Gn(
 (�) ; �(�))k (15)

+ kGn(b
 (�) ; b�(�))k (16)

+Op(n
�1=2):

We now analyze the terms in Equations (14), (15) and (16) sequentially. First, for Equation (14), again,

by triangle inequality

kG(b
 (�) ; � (�))�G(b
 (�) ; b�(�))k
� kG(b
 (�) ; � (�))�G(b
 (�) ; b�(�))� �2(b
 (�) ; � (�))(b�(�)� � (�))k
+ k�2(b
 (�) ; �(�))(b�(�)� � (�))� �2(
 (�) ; �(�))(b�(�)� � (�))k
+ k�2(
 (�) ; �(�))(b�(�)� � (�))k:

Under the regularity assumptions, we have

kG(b
 (�) ; � (�))�G(b
 (�) ; b�(�))� �2(b
 (�) ; � (�))(b�(�)� � (�))k
= Op

�
kb�(�)� � (�) k2�

and

k�2(b
 (�) ; �(�))(b�(�)� � (�))� �2(
 (�) ; �(�))(b�(�)� � (�))k
= Op

�
kb� (�)� � (�) kkb
 (�)� 
 (�) k� :

Thus,

kG(b
 (�) ; � (�))�G(b
 (�) ; b�(�))k
� Op

�
kb� (�)� � (�) k2�+Op �kb� (�)� � (�) kkb
 (�)� 
 (�) k� (17)

+ k�2(
 (�) ; �(�))(b� (�)� � (�))k: (18)
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In addition,

�2(
 (�) ; � (�)) = �E
�
ft(
 (�)

>
Zt (� (�)))Zt (� (�))

@g(Xt; � (�))

@�

�
Thus,

kG(b
 (�) ; � (�))�G(b
 (�) ; b�(�))k
� k�2(
 (�) ; �(�))(b� (�)� � (�))k(1 + op(1))
= op(1)

and, as a result,

kG(b
 (�) ; b�(�))k � kG(b
 (�) ; �(�))k(1 + op(1)):
For Equation (15), we need to verify stochastic equicontinuity. Using the fact that I (Yt < �) is a

monotonic function, and under our smoothness assumption on Ft (�) and the moment condition on Y , we

have

sup
k
�
(�)k��;k���(�)k��

p
nkGn(
; �)�G(
; �)�Gn(
 (�) ; � (�)) +G(
 (�) ; � (�))k

1 +
p
n fkGn(
; �)k+ kG(
; �)kg

= op(1);

by Lemma 4.2 of Chen (2006), and, consequently,

kG(b
 (�) ; b�(�))�G(
 (�) ; �(�))�Gn(b
 (�) ; b�(�)) +Gn(
 (�) ; �(�))k
� op(1)�

n
kGn(b
 (�) ; b�(�))k+ kG(b
 (�) ; b�(�))ko

� op(1)�
n
kGn(b
 (�) ; b�(�))k+ kG(b
 (�) ; �(�))k(1 + op(1)o

where the last inequality comes from (18). Thus,

kG(b
 (�) ; �(�))k
� k�2(
 (�) ; �(�))(b� (�)� � (�))k+Op �kb� (�)� � (�) k2�+Op �kb� (�)� � (�) kkb
 (�)� 
 (�) k�
+ op(1)�

n
kGn(b
 (�) ; b�(�))k+ kG(b
 (�) ; �(�))k(1 + op(1)o

+ kGn(b
 (�) ; b�(�))k;

34



and

kG(b
 (�) ; �(�))k(1� op(1)) � kGn(b
 (�) ; b�(�))k(1 + op(1)) +Op(n�1=2)
= inf



kGn(
; b�(�))k+Op(n�1=2):

We only need to show that

inf


kGn(
; b�(�))k = Op(n

�1=2);

which is true since

kGn(
; b�(�))k � kGn(
; b�(�))�G(
; b�(�))�Gn(
 (�) ; � (�))k
+ kG(
; b�(�))�G(
; � (�))k+ kG(
; � (�))k+ kGn(
 (�) ; � (�))k
� op(1)�

n
kGn(
; b�(�))k+ kG(
; b�(�))ko+ kG(
; � (�))k+Op(n�1=2):

Thus,

kGn(
; b�(�))k(1� op(1)) � op(1)�
n
kG(
; b�(�))ko+ kG(
; � (�))k+Op(n�1=2);

and

inf


kGn(
; b�(�))k = Op(n

�1=2);

since kG(
 (�) ; � (�))k = 0 and

kG(
; b�(�))k � kG(
; � (�))k+ k�2(
 (�) ; � (�))(b�(�)� � (�))k(1 + op(1)):
And, consequently,

Ckb
 (�)� 
 (�) k � kG(b
 (�) ; � (�))k = Op(n
�1=2):

Next we show asymptotic normality. De�ne the linearization

Ln(
; b�(�)) = Gn(
 (�) ; � (�)) + �1(
 � 
 (�)) + �2(
 (�) ; � (�))(b�(�)� � (�));
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and note that

Gn(
; b�(�)) = Gn(
 (�) ; � (�)) + �1(
 � 
 (�)) + �2(
 (�) ; � (�))(b�(�)� � (�))
+G(
; � (�))�G(
 (�) ; � (�))� �1(
 � 
 (�))

+ �2(
; � (�))(b�(�)� � (�))� �2(
 (�) ; � (�))(b�(�)� � (�))
+G(
; b�(�))�G(
; � (�))� �2(
; � (�))(b�(�)� � (�))
+Gn(
; b�(�))�G(
; b�(�))�Gn(
 (�) ; � (�)) +G(
 (�) ; � (�))
�G(
 (�) ; � (�)):

Under our assumptions,

kGn(b
 (�) ; b�(�))� Ln(b
 (�) ; b�(�))k
� kG(b
 (�) ; � (�))�G(
 (�) ; � (�))� �1(b
 (�)� 
 (�))k
+ k�2(b
 (�) ; � (�))(b�(�)� � (�))� �2(
 (�) ; � (�))(b�(�)� � (�))k
+ kG(b
 (�) ; b�(�))�G(b
 (�) ; � (�))� �2(b
 (�) ; � (�))(b�(�)� � (�))k
+ kGn(b
 (�) ; b�(�))�G(b
 (�) ; b�(�))�Gn(
 (�) ; � (�)) +G(
 (�) ; � (�))k
+ kG(
 (�) ; � (�))k

= op(n
�1=2);

because

kG(b
 (�) ; � (�))�G(
 (�) ; � (�))� �1(b
 (�)� 
 (�))k = Op(kb
 (�)� 
 (�) k2) = op(n
�1=2);

k�2(b
 (�) ; � (�))(b�(�)� � (�))� �2(
 (�) ; � (�))(b�(�)� � (�))k = op(1)kb
 (�)� 
 (�) k = op(n
�1=2);

by root-n consistency;

kG(b
 (�) ; b�(�))�G(b
 (�) ; � (�))� �2(b
 (�) ; � (�))(b�(�)� � (�))k � C
�
kb�(�)� � (�) k2�

= op(n
�1=2), since T > n

kGn(b
 (�) ; b�(�))�G(b
 (�) ; b�(�))�Gn(
 (�) ; � (�)) +G(
 (�) ; � (�))k = op(n
�1=2);
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by stochastic equicontinuity, and

kG(
 (�) ; � (�))k = op(n
�1=2);

by de�nition. Thus

min


kGn(
; b�(�))k = min



kLn(
; b�(�))k+ op(n�1=2); (19)

and

p
n (b
(�)� 
(�))
= �

�
�>1 �1

��1
�>1
p
n
h
Gn(
 (�) ; � (�)) + �2(
 (�) ; � (�))(b�(�)� � (�))i

= ���11
p
n
h
Gn(
 (�) ; � (�)) + �2(
 (�) ; � (�))(b�(�)� � (�))i

= ���11
p
nGn(
 (�) ; � (�))� ��11 �20 �

p
np
T

p
T (b�(�)� � (�))

The �rst term,

���11
p
nGn(
 (�) ; � (�))) N

�
0;
�11 
0


�1
1

�
The second term will converge to 0 under Assumption 5.
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