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Summary

Popular smoothing techniques generally have a di�cult time accommodat-
ing qualitative constraints like monotonicity, convexity or boundary condi-
tions on the �tted function. In this paper, we attempt to bring the problem
of constrained spline smoothing to the foreground and describe the details
of a constrained B-spline smoothing (COBS) algorithm that is being made
available to S-plus users. Recent work of He & Shi (1998) considered a spe-
cial case and showed that the L1 projection of a smooth function into the
space of B-splines provides a monotone smoother that is 
exible, e�cient
and achieves the optimal rate of convergence. Several options and general-
izations are included in COBS: it can handle small or large data sets either
with user interaction or full automation. Three examples are provided to
show how COBS works in a variety of real-world applications.

Keywords: Constraint; Information criterion; Knot selection; Linear pro-
gram; Nonparametric regression; Regression quantile; Smoothing Spline.
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1 Introduction

A huge amount of research has been carried out in the past few decades on
nonparametric function estimation based on the idea of smoothing. A num-
ber of highly successful smoothing methods are available in S-plus. Among
them are smoothing splines (Wahba 1990), kernel smoothing (Watson 1966),
local-span supersmoother (Friedman 1984), and robust smoothing via Lowess
(Cleveland 1979). Several other smoothers are also available from statlib. Im-
portant recent references to nonparametric smoothing include H�ardle (1990),
Hastie & Tibshirani (1990), and Green & Silverman (1994).

Data smoothing is often viewed as a graphical method to uncover the
underlying relationship between two variables. In some applications, the
functions being estimated are known to satisfy certain qualitative properties
such as monotonicity. For example in variable transformations, it is often
desirable to restrict oneself to monotone functions. Further applications can
be found in growth charts, brain image registrations, and probability curve
estimation. In other cases, concavity or convexity constraints may be de-
sirable. Examples include cost functions and e�cient production frontiers
in economics, where the estimated functions are expected to be convex and
concave respectively. If the response variable is a proportion, one naturally
wants the �tted curves to fall between 0 and 1. For cyclical time series, one
might want the �tted curve at the last period to match that at the �rst pe-
riod of a cycle. In some cases, the function values or its derivatives at some
speci�c points are known and need to be satis�ed by the �tted curve.

Any smoother that performs local averaging over the response values will
yield a �tted function falling within the range of the response values. In some
applications, this is highly desirable. For example, if the response variable
is age or income, zero is the intrinsic lower bound of the estimated function.
Conventional spline methods, however, may not preserve this positivity near
the boundaries. The constrained B-spline smoothing method we introduce
in this paper can easily impose such boundary conditions and help overcome
this weakness of spline smoothers.

We will argue that a constrained smoother that incorporates prior in-
formation often improves e�ciency of the estimators. Delecroix, Simioni &
Thomas-Agnan (1995) report a simulation study on this. In the case of
monotone smoothing, several methods have been proposed in the literature;
see H�ardle (1990, Chapter 8) , Hawkins (1994) and Ramsay (1988) for fur-
ther details. Wright & Wegman (1980) contain a general treatment using
splines that includes monotonicity and convexity constraints in least squares
regression. Nevertheless, few constrained smoothing algorithms are publi-
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cally available as we write due to the di�culty of incorporating restrictions
like those mentioned above.

COBS (COnstrained B-Splines) is a very attractive constrained smoothing
method with some unique advantages. Extending the earlier work of Ramsay
(1988) and Koenker, Ng & Portnoy (1994), He & Shi (1998) considered a
special case of monotone smoothing and laid down the foundation for COBS.
The present paper focuses on the algorithmic aspect of COBS and contains
a wide variety of options for 
exible application.

We begin with a general framework of L1 minimization for function es-
timation. This includes two general classes of spline smoothers: smoothing
splines (with a roughness penalty) and regression splines (without roughness
penalty). Two options are provided in COBS to determine the smoothing
parameter of the smoothing splines as well as the knot formation of the re-
gression splines. The �rst option allows user interaction, which allows users
formulate their own choice of the smoothing parameter or knot mesh. Since
it takes very little time for COBS to return the �tted curve for each set of
chosen parameters, visual comparison and judgment can be performed inter-
actively. The second option provides full automation. Users are not required
to supply any smoothing parameter; COBS makes adaptive choices using
information criteria similar to those in model selection.

The L1 framework leads to linear programming (LP) formulations of the
computational problems and allows e�cient computation via standard linear
programming techniques. The LP form makes it possible to naturally incor-
porate all the constraints discussed above. As far as we know, COBS is the
only smoothing algorithm that can do this without substantial increase in
computational costs.

Robust smoothing via L1 methods was also investigated in Wang & Scott
(1994). COBS facilitates more than just robust function estimation via condi-
tional median estimation of the response given the covariate. It also provides
computation of other conditional quantile functions which have gradually
become an integral part of data analysis. See Koenker & Bassett (1978) for
their pioneering work on regression quantiles.

In Section 2, we introduce linear and quadratic splines and describe how
the L1 minimization problem can be solved as a linear program. Section 3
discusses how COBS chooses the smoothing parameter or the knot mesh if
full automation is desired. Section 4 describes some additional features of
COBS and �nally three illustrative examples are provided in Section 5. The
underlying Fortran program and S-plus interface for COBS are available from
www.econ.uiuc.edu/�ng or www.stat.uiuc.edu/�he/software.html. The S-
plus code used for the examples in this paper are also available.
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2 Constrained Smoothing

For a pair of bivariate random variables (X;Y ), the � th conditional quantile
function, g� (x), of Y given X = x is a function of x such that

P (Y � g� (x) jX = x) = �:

The conditional median function (� = :5) provides a measure of central ten-
dency and can be used to describe the overall relationship between X and
Y . When a more complete picture of the relationship is needed, the whole
spectrum of conditional quantile functions can be examined.

Given n pairs of realizations f(xi; yi)g
n
i=1 with a = x0 < x1 < � � � <

xn < xn+1 = b, some smooth function g and the check function �� (u) =
2 [� � I(u < 0)]u = [1 + (2� � 1) sgn (u)] juj with I(�) being the indicator
function, we de�ne \�delity" to the data as

\�delity" =
nX
i=1

�� (yi � g(xi)):

Koenker et al. (1994) introduced the � th Lp quantile smoothing spline, ĝ�;Lp (x),
which is the solution to

min
g

\�delity" + � \Lp roughness" (1)

as a nonparametric estimator for g� (x). The usual smoothing parameter �
controls the trade-o� between �delity to the data and roughness of the �t.
The smoothing spline ĝ�;Lp (x) becomes an interpolating function as � ! 0
and corresponds to a linear �t when �!1. Two versions of the roughness
measure,

\L1 roughness" = V (g0) =
n�2X
i=1

��g0 �x+i+1�� g0
�
x+i
��� (2)

and
\L1 roughness" =k g00 k1= max

x
g00 (x) (3)

were suggested, where V (:) denotes the total variation norm. They show that
ĝ�;L1 (x) is a linear (second order) smoothing spline for the L1 roughness
penalty while ĝ�;L1 (x) can be approximated by a quadratic (third order)
smoothing spline for the L1 roughness penalty.

In this section, we will concentrate on the special case of � = :5 so \�-
delity" is measured by the L1 norm,

\�delity" =
nX
i=1

jyi � g (xi)j :
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The resulting linear and quadratic smoothing splines are two alternative es-
timators for the conditional median function.

It is well known that any mth order smoothing spline with simple knots
at x1; : : : ; xn has an equivalent B-spline representation on the same knot
sequence. We, however, start with a more general knot mesh T = ftig

N+2m
i=1

with t1 = � � � = tm < tm+1 < � � � < tN+m < tN+m+1 = � � � = tN+2m.
The motivation for this generalization, pertaining to computational e�ciency
considerations, will be explained in Section 2.1. The B-spline representation,
s 2 Sm;T , of a smooth function becomes

s (x) =
N+mX
j=1

ajBj (x)

where N is the number of internal knots, Bj (x) are the normalized B-spline
basis functions, aj are the coe�cients for the B-spline basis functions and
Sm;T is the space of polynomial splines of order m with mesh T . See De Boor
(1978), Dierckx (1993) or Schumaker (1981) for more details. An elegant
presentation of 
exible smoothing with B-splines and penalties is provided
by Eilers & Marx (1996).

2.1 Smoothing B-Splines

For the sake of expositional convenience, we assume in this subsection that
the xi are all distinct from one another. We use linear B-splines (m = 2)

with N = n � 2 internal knots in the mesh T = ftig
N+2m
i=1 such that t1 =

tm = x1; tm+1 = x2; : : : ; tN+m = xn�1; tN+m+1 = tN+2m = xn for the
optimization problem of the linear smoothing spline in (1) and (2). Now the
objective function can be written as

min
�2RN+m

nX
i=1

������yi �
N+mX
j=1

ajBj (xi)

������
+�

NX
i=1

������
N+mX
j=1

ajB
0

j (ti+m) �
N+mX
j=1

ajB
0

j (ti+m�1)

������
where � = (a1; : : : ; aN+m) :

We can express the above in a more compact form as

min
�2RN+m

n+NX
i=1

jeyi � exi�j (4)

where

~y =

�
y
0

�
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is an (n+ N )� 1 pseudo response vector,

~X =

�
B

�C

�

is an (n+ N )� (N +m) pseudo design matrix with

B =

2
64

B1 (x1) � � � BN+m (x1)
... � � �

...
B1 (xn) � � � BN+m (xn)

3
75

and

C =

2
64

B01 (tm+1)�B01 (tm) � � � B0N+m (tm+1)�B0N+m (tm)
... � � �

...
B01 (tN+m) �B01 (tN+m�1) � � � B0N+m (tN+m) �B0N+m (tN+m�1)

3
75

The �tted curve, m̂�;L1 (x) =
PN+m

j=1 âjBj (x), is a linear (median) smoothing
B-spline.

The objective function (4) can be solved by any e�cient linear program-
ming algorithm. To see this, rewrite (4) as

min
n
10 (u+ v) j~y � ~X� = u� v;

�
u
0

; v
0

�
2 R

2(n+N)
+

o
: (5)

A modi�cation of Bartels & Conn (1980)'s non-simplex active-set algorithm
for the quantile smoothing splines described in Ng (1996) and Koenker & Ng
(1996) can be easily adapted for (5).

Similarly, using quadratic (m = 3) B-splines withN = n�2 internal knots

in the mesh T = ftig
N+2m
i=1 such that t1 = t2 = tm = x1; t4 = x2; : : : ; tN+m =

xn�1; tN+m+1 = tN+2m�1 = tN+2m = xn, we rewrite (1) and (3) as

min
�2RN+m

nX
i=1

������yi �
N+mX
j=1

ajBj (xi)

������+ �max
x

N+mX
j=1

ajB
00

j (x)

where �0 = (a1; : : : ; aN+m). This is equivalent to

min
�2RN+m+1

nX
i=1

������yi �
N+mX
j=1

ajBj (xi)

������+ ��

s:t: � � �
N+mX
j=1

ajB
00

j (ti+m�1) � � for i = 1; : : : ; N + 1

where �0 = (a1; : : : ; aN+m; �). In a more compact form, we have

min
�2RN+m+1

n+1X
i=1

jeyi � exi�j (6)
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s:t: eD� = �
D 1

�D 1

�
� � 0

where

~y =

�
y
0

�
is an (n+ 1) pseudo response vector,

~X =

�
B 0

0 �

�

is an (n+ 1)� (N +m + 1) pseudo design matrix and

D =

2
64

B001 (tm) � � � B00N+m (tm)
... � � �

...
B001 (tN+m) � � � B00N+m (tN+m)

3
75 :

The resulting �tted curve, m̂�;L1 (x) =
PN+m

j=1 âjBj (x), is a quadratic (me-
dian) smoothing B-spline.

The LP equivalence of (6) is

min
n
10 (u+ v) j~y � ~X� = u� v; eD� � 0;

�
u
0

; v
0

�
2 R

2(n+N)
+

o
: (7)

The pseudo design matrices in (5) and (7) are both of the order O
�
n2
�
:

This will impose a huge burden on computational speed and memory space for
large data sets. But this can be alleviated by approximating the smoothing
splines using a smaller number of internal knots N and hence reducing the
order of the pseudo design matrices to O (nN ). For example, we can use

T = ftig
N+2m
i=1 with ti chosen to be the N (� n) sample quantiles of the

covariate x, see Section 3 for further details.

2.2 Imposing Additional Constraints

Due to the LP nature of the problems (5) and (7), many qualitative re-
strictions on the �tted curves can be incorporated easily by the addition of
equality or inequality constraints as described below.

Monotonicity Constraints

For the linear spline m̂L1 (x), the additional set of constraints needed is

H� � 0

for increasing functions and
H� � 0
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for decreasing functions where

H =

2
64

B01 (tm) � � � B0N+m (tm)
... � � �

...
B01 (tN+m+1) � � � B0N+m (tN+m+1)

3
75 :

For the quadratic spline m̂L1 (x), the extra set of N + 2 constraints is�
H 1

�
� � 0

for increasing functions and

�
H 1

�
� � 0

for decreasing functions.

Convexity Constraints

For m̂L1 (x), we need the N constraints

C� � 0:

For m̂L1 (x), the additional set of N + 1 constraints is�
D 0

�
� � 0:

Concavity restriction can similarly be imposed with all the inequalities
reversed.

Periodicity Constraints

A restriction of the form g (x1) = g (xn) is useful for cyclical time series
where x1 and xn are the �rst and last unique observed values in the time
domain of a cycle, e.g. the �rst (x1 = 1) and last (xn = 12) months of a year
in monthly data. This can be achieved easily with the addition of the single
equality constraint h

~X(1) � ~X(n)

i
� = 0

where ~X(1) and ~X(n) are the �rst and nth row of the pseudo design matrix
~X.

Pointwise Constraints

Pointwise constraints on the function and/or its derivatives can be directly
imposed on the coe�cients of the spline as illustrated in Section 4.3.

2.3 Regression B-splines

The computational burden can be ameliorated in a di�erent way by dropping
the penalty term totally; i.e. setting � = 0 in (1). This gives rise to the
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(median) regression B-splines of He & Shi (1994). Fidelity in regression B-
splines is still measured the same way as in smoothing splines but roughness
is controlled by the number of internal knots N rather than the smoothing
parameter �.

The linear (median) regression B-spline, m̂T;L1 , will solve

min�2RN+m
P

(u+ v)

s:t: y � ~X� = u� v
u 2 Rn

+; v 2 Rn
+

where
~X = B

is now an n � (N +m) pseudo design matrix with m = 2. The quadratic
(median) regression B-spline, m̂T;L1 , solves the same minimization problem
with m = 3.

The quantity (N +m) plays the role of e�ective dimensionality of the �t.
The two extreme �ts correspond to N = 0, which yields the globally linear
and quadratic B-spline �ts form = 2 and m = 3 respectively, while N = n�2
with ti+m�1 = xi for i = 1; : : : ; n, gives the interpolating �t.

3 Choice of Smoothing Parameter or Knots

The calling sequence of COBS is given in the Appendix. If a fully automated
smoother is required, we must resolve the issue of choosing either the smooth-
ing parameter � for the smoothing splines or the knot mesh T = ftig

N+2m
i=1

in the case of regression B-splines. Asymptotically, the generalized cross-
validation (GCV ) criterion commonly used in least squares based smoothing
splines is equivalent to the Akaike information criterion (AIC). AIC is sim-
ilar to the Schwarz information criterion (SIC) for moderate sample sizes.
For our L1-type objective function, however, the projection based GCV can
not be as directly motivated.

When the argument lambda is supplied with a negative value, COBS
computes the smoothing spline with � chosen to minimize a Schwarz-type
information criterion used in Koenker et al. (1994), and He, Ng & Portnoy
(1998). Denote m̂�;L1 or m̂�;L1 simply as m̂�, our variant of SIC is de�ned
as

SIC(�) = log(
1

n

X
i

�� (yi � m̂�(xi))) +
1

2
p� log(n)=n

where p� is the number of interpolated data points and serves as dimensional-
ity measure of the �tted model. When � = :5, we may view the above SIC as
the Gaussian likelihood based information criterion of Schwarz (1978) where
the root mean square error is replaced by a robust alternative using the mean
absolute residual as a measure of �delity to the observed data.
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From the LP nature of the objective functions, we know there are only
�nitely many distinct m̂� as � varies over (0;1). Parametric linear pro-
gramming (PLP) as described in Ng (1996) is used to obtain all the possible
distinct m̂� when � decreases to zero from a value speci�ed in the argument
lstart.

The total number of distinct � values grows with the sample size n. As a
result, PLP will rapidly become the computational bottle-neck for moderately
large n. From our experience, m̂� is not very sensitive to small perturbation
in the � values. In typical cases, there exist several very similar solutions
corresponding to neighboring values of � obtained from PLP. To speed things
up, COBS allows users to skip some neighboring � values via the argument
factor by specifying 1 <factor< 4 while performing PLP. A bigger factor
allows more neighboring �'s to be skipped. This is equivalent to using a
coarser grid in the search for the optimal �.

It is important to note that the �rst term of SIC becomes in�nitely small
if m̂� interpolates every single data point. As a result, the � that minimizes
SIC could be too small for unconstrained �ts. Since SIC is meant to be
used for model comparison with dimensionality not too close to n, COBS
displays a warning message recommending the user examine the plot of SIC
against � when the chosen � is near zero to see if the second minimizer of
SIC will provide a more reasonable �t. COBS returns the necessary plotting
information in the components $pp.lambda and $sic.

When lambda is provided with a positive number, it will be used as the
value of the smoothing parameter. No e�orts will be made to choose the
optimal �. This option allows the user to experiment with various �ts of
di�erent smoothness.

The argument knots allows users to specify the location of the knots while
nknots is used to control the number of knots. If knots is missing, a default
set of nknots knots will be generated by one of the two methods speci�ed by
the method argument. The default method is 'quantile', which uses nknots
design points uniform in their percentile levels as the knot sequence. For
example, if nknots = 3, the median of the covariate will be the single internal
knot. The quartiles will be used if nknots = 5. If method = 'uniform',
uniformly spaced points between the smallest and largest design values will
be used as the knot sequence. COBS will display an error message if there
is no observation which falls between any pair of adjacent knots when the
'uniform' option is chosen. If nknots is missing, a default value of 20 is
assigned.

When lambda is set to zero, COBS computes the regression B-spline esti-
mate. If both knots and nknots are provided and nknots equals the length
of knots, COBS uses the supplied knot sequence without performing the knot
selection procedure Step 1 { 3 below. This allows users to interactively ex-
periment with various �ts for their speci�ed sets of knots. Otherwise, the knot
selection procedure described below will be performed. If knots is missing,
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COBS will generate a default set of nknots (default to 6 if nknots is missing
as well) knots by one of two methods speci�ed through method as described
above. If knots is not missing, COBS will use it to begin the following knot
selection procedure:

Step 1: Choose the initial optimal number of internal knots

N . Compute the regression B-splines for N = 0; : : : ; (nknots �2) internal
knots from knots. Denote m̂T;L1 or m̂T;L1 simply as m̂T , select N that
corresponds to the smallest

AIC(T ) = log(
1

n

X
i

�� (yi � m̂T (xi))) + 2(N +m)=n

where T is the knots mesh, N is the number of internal knots in T , and m is
the order of spline used.

Step 2: Perform stepwise knot deletion. Each of the internal knots
is deleted sequentially to obtain a sequence of AIC values. The one whose
deletion leads to the largest reduction in AIC is then slated for actual dele-
tion. This process is repeated until no more existing knot can be removed.

Step 3: Perform stepwise knot addition. When the argument
knots.add is set to TRUE , COBS takes the mid-point between every ad-
jacent pair of existing knots as potential new candidate. If inclusion of any
such point reduces the value of AIC, we choose to add the one which provides
the largest reduction in AIC as long as there are observations between the
knots. This process repeats until no more knot needs to be added.

We should note that in the current implementation, we do not cycle
through Step 2 and 3 repeatedly. That is, we do not go back to the knot
deletion process after knot addition.

We use the constant 2=n in the second term of AIC as it appears to
give the best overall results in our experiments with monotone and con-
cave/convex functions. Should AIC undersmooth the data, users also have
the option of using the SIC by substituting log(n)=n for 2=n. This is done
in COBS via assigning ic='sic' instead of the default setting of ic='aic'.

In constrained smoothing, the number of knots needed is typically small.
The initial number of knots chosen by AIC in Step 1 is often less than
4 when the sample size is not too large. However, if the chosen number
is N = 4, we may want to investigate estimated �ts with larger N values.
COBS will remind the user of this through a warning message at the end of
the computation. The user can then re-run the program with a larger value
of nknots if knots is missing, or supply COBS with a longer knots sequence.

4 Other Features of COBS

In this section, we discuss additional issues related to the design and use of
COBS.
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4.1 Large Sample Problems

The amount of time needed to obtain an estimate may disappoint even the
most patient users when a fully automated solution is chosen for a large
data set. COBS seeks an approximate solution to the choice of smoothing
when the sample size n exceeds 1000. This is achieved by using a subset of
the original data during the selection of the smoothing parameter �. The
sub-sample size is chosen to be n� = 670 + log(n)3 rounded to the nearest
integer. Assuming that the true function is twice di�erentiable, we know that
the optimal smoothing parameter is in the order of n1=5, see Portnoy (1997).
The SIC-based choice of � from the subset can be adjusted by multiplying
a factor of (n=n�)1=5, and then the whole data set is used in the �nal model
�tting stage. As noted in the previous section, the storage space needed in
the regression B-spline (with lambda= 0) is of the order much smaller than
the smoothing B-spline. We, therefore, recommend using the smoothing B-
spline with a small number of internal knots N or the regression B-spline
when the sample size is big and automation is required.

4.2 Roughness Penalty

COBS uses the argument degree to determine the type of roughness penalty
for the smoothing B-splines. The L1 roughness penalty is selected by setting
degree = 1 for linear spline �ts and the L1 roughness penalty is chosen
with degree = 2 for quadratic splines.

4.3 Pointwise Constraints

Four types of pointwise constraints can be imposed in COBS via the argument
pointwise, whose value is a three-column matrix with each row representing
one of the following conditions:

(0; x; y) for g(x) = y;
(1; x; y) for g(x) � y;
(�1; x; y) for g(x) � y;
(2; x; y) for g0(x) = y.

Multiple constraints are allowed. COBS performs a feasibility check to ensure
that they do not contradict one another.

Pointwise constraints are particularly useful in imposing boundary condi-
tions. For example, if the response variable is weight or salary, it is useful to
impose the (1; 0; 0) constraint which corresponds to g(0) � 0 . For monotoni-
cally increasing function, this will imply g(x) � 0 for all x > 0. See Example
2 for an implementation of such boundary restriction.

The constraints we have included in COBS are certainly not meant to
be exhaustive. Other types of pointwise restrictions could be added as need
arises.
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4.4 Binary Choice Model

In a binary choice model where there are only two possible values of the
response variable, the L1 based COBS may not be appropriate. COBS will,
therefore, print out a warning message recommending users pre-smooth the
data with one of the S-plus smoothers like ksmooth, loess or smooth.spline.
The pre-smoothed �tted values can then be passed on to COBS to incorporate
further monotonicity or pointwise constraints.

4.5 More on Other Quantiles

Conditional quantile functions beyond the median may provide a more com-
plete picture of the relationship between the response and the covariate.
COBS provides estimates of the � th conditional quantile via the tau ar-
gument. We should point out that AIC and SIC criteria may not perform
as well in choosing the smoothing parameters for extreme quantiles (� close
to 0 or 1) as for the median. User intervention is recommended in such
situations.

It is also possible that the conditional quantile estimates may cross each
other in the areas where data are sparse. One way to avoid this is to begin
with some speci�c quantile of interest, say the median. Pointwise constraints
as discussed above can then be imposed on the subsequent quantiles of inter-
est to ensure that a subsequent quantile falls above or below the previously
estimated quantile. Another practical approach is to compute the restricted
regression quantiles proposed in He (1997).

4.6 Speeding Up

Recently, Portnoy & Koenker (1997) propose an improved interior point al-
gorithm to solve an LP problem like ours. Their idea is to combine the recent
advances in interior point method with a new statistical pre-processing ap-
proach so the algorithm can handle massive data sets at a speed comparable
to that of least squares computation. Although the current version of COBS
has not adopted this new method, it does appear possible that a substantial
improvement in computational speed can be achieved for massive data sets
in the future.

5 Illustrative Examples Using COBS in S-plus

To help readers familiarize themselves with the COBS approach, we provide
three examples in this Section using COBS in S-splus. The S-plus codes used
to produce our results are available at the web site provided at the end of
Section 1. In Examples 2 and 3, we �nd it more di�cult to modify other
smoothers to satisfy the necessary pointwise constraints.
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Example 1: We consider the annual average global surface temperature
measured in degrees K (Hansen & Lebede� 1987, Hansen & Lebede� 1988).
The data covers the period of 1880 to 1992. The temperatures presented in
Figure 1 are temperature deviations.

The monotonicity constraint was used under a strong assumption of global
warming; see Figure 1a. The automated AIC knot selection criterion picked
N = 4 (the largest allowed by the default value of nknots = 6) internal
knots for the 50th percentile curve. As discussed in Section 3, COBS printed
a warning message so we increased nknots incrementally to 9. The �nal
knots selected are located at (1880, 1908, 1936, 1964, 1978, 1992). These
same knots were used for the 10th and 90th percentile curves.

The extreme temperature years in the top and bottom 10% after adjusting
for the overall trend of global warming (if so believed) can be readily identi�ed
in Figure 1a. The hotter years are 1889, 1897�, 1900, 1901, 1915�, 1926,
1937�, 1938�, 1940, 1947�, 1953, 1980�, 1981 and 1990� with those years
followed by an `�' fall exactly on the 90th percentile curve. The colder years
are 1884, 1887�, 1904, 1907�, 1917, 1918, 1950�, 1956, 1964, 1965, 1971�,
1976 and 1992� again with those followed by an `�' lie exactly on the 10th
percentile curve. After adjusting for the trend, 1987, 1988, and 1991 would
not be considered extreme as they all fell below the top 10th percentile curve.

If the assumption of rising temperatures is dropped, the unconstrained
version of the curves are presented in Figure 1b. They show a cooling period
from 1936 to 1964. These unconstrained percentile curves are quite similar
to the linear quantile smoothing splines presented in Koenker & Schorfheide
(1994, p.401, Fig 3) except their tenth percentile is somewhat oversmooth as
compared to ours.

The percentiles curves provide an ordering of data adjusted for the overall
trend. They also suggest that variability of global temperature is rather stable
over the last century. We have not attempted to correct for serial correlations
in the data in all the �ts. Our main objective here is to demonstrate how
COBS can be applied to real data sets. Readers are encouraged to refer
to Koenker & Schorfheide (1994) for a more careful treatment of possible
autocorrelation in the model.

Example 2: The US Army Construction Engineers use 
ashing condition
index (FCI) as one of several important roof condition measures. Roughly
speaking, FCI shows what percentage of roof 
ashing is in good condition. We
use records from 153 roof sections with EPDM base 
ashing from a number
of U.S. Army bases and wish to study how FCI decreases over time. The
ages of the roof sections vary between several weeks to �fteen years. Due
to skewness of the FCI distribution, it is especially helpful in this case to
compute the percentile curves instead of the mean and variance functions.
The three quartiles corresponding to � = 0:25; 0:50 and 0:75 are computed
for this example.
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In addition to the obvious constraint of monotonicity, the engineers sug-
gested that the majority of the new roofs at age 0 should have FCI at 100.
Hence, we need a boundary constraint of g(0) = 100 for these quartiles. We
choose to use the quadratic smoothing B-splines in COBS. To ensure that
enough observations fall between adjacent knots, we use ten distinct ages
(equally spaced in their percentile ranks) as knots.

For each � , we obtained a plot of SIC versus the values of �. Examination
of these plots proved to be useful. The SIC plot for � = 0:5 is presented
in Figure 2a. The global minimum occurs at � = 21:58. The corresponding
median smoothing spline is given in Figure 2b. In this example, a range of
larger �'s yield similar SIC values and similar �tted curves mainly due to
the simplicity in data structure when the monotonicity constraint is present.
The second minimumof SIC occurs at 239.24, and the corresponding median
smoothing spline is also plotted in Figure 2b as the dotted curve. When a
large value of � is an acceptable choice, it suggests that the resulting �t is
close to globally quadratic and the roughness penalty is near zero.

We can see from Figure 2b that the top 25% of the EPDM roofs still
remain in perfect condition after �fteen years. In fact, about 38% (58/153)
of the responses stay at 100 for the 15-year period. Even the lower quartile
shows a very slow rate of degradation after the eighth year.

Example 3: This example serves to illustrate the use of 'periodic'
constraint for cyclical data. The response variable is the daily average wind
speed (in knots) recorded at the synoptic meteorological station in Dublin,
Ireland from 1961 to 1978. There are altogether 6574 observations. The data
was analyzed in detail in Haslett & Raftery (1989) and can be downloaded
from statlib. Here, we use the quadratic smoothing B-spline with thirteen
knots which correspond roughly to the beginning of all the twelve months of
a year. The data is plotted in Figure 3a. For � = :5, the initial � chosen
by SIC reached the largest possible value allowed by the default setting
of lstart. As recommended in the warning message of COBS, we re-�t
the model to allow the parametric linear programming in � to begin from a
larger � value. The �nal �ts for � = :1; :5; and :9 using � values automatically
selected from the SIC criterion are given in Figure 3b. Notice that for each
of the quantiles, we have required that the �tted values at the beginning and
the end of a year are the same. However, we have not attempted to correct
for any possible correlation in the data. Another point worth noting is that
the upper percentile curve looks rather rough. Further research is needed to
determine how the SIC criterion should be adjusted when � is close to 0 or
1.
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Appendix

Following is the calling sequence for COBS.

cobs(x, y, constraint, z, minz = knots[1], maxz = knots[nknots], nz = 100,
knots, nknots, method = 'quantile', degree = 2, tau = 0.5, lambda = 0, ic =
'aic', knots.add = F, pointwise, print.warn = T, print.mesg = T, coef = rep(0,
nvar), w = rep(1, n), maxiter = 20*n, lstart = log( .Machine$single.xmax )
** 2, factor = 1)

ARGUMENTS

x vector of covariate.

y vector of response variable. It must have the same length (n) as x.

constraint 'increase', 'decrease', 'convex', 'concave', 'periodic' or 'none'.

OPTIONAL ARGUMENTS

z vector of grid points at which the �tted values are evaluated; default to an
equally spaced grid with nz grid points between minz and maxz. If
the �tted values at x are desired, use z = unique(x).

minz needed if z is not given; default to min(x) or the �rst knot if knots
are given.

maxz needed if z is not given; default to max(x) or the last knot if knots
are given.

nz number of grid points in z if z is not given; default to 100.

knots vector of locations of the knot mesh; if missing, nknots number of
knots will be created using the speci�ed method and automatic knot
selection will be carried out for regression B-spline (lambda = 0); if not
missing and length(knots) == nknots, the provided knot mesh will
be used in the �t and no automatic knot selection will be performed;
otherwise, automatic knots selection will be performed on the provided
knots.

nknots maximum number of knots; default to 6 for regression B-spline, 20
for smoothing B-spline.

method method used to generate nknots number of knots when knots is
not provided; 'quantile' (equally spaced in percentile levels) or 'uniform'
(equally spaced in covariate); default to 'quantile'.

degree degree of the splines; 1 for linear spline and 2 for quadratic spline;
default to 2.
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tau desired quantile level; default to 0.5 (median).

lambda penalty parameter; lambda== 0: no penalty (regression B-spline);
lambda>0: smoothing B-spline with the given lambda; lambda<0:
smoothing B-spline with lambda chosen by a Schwarz-type information
criterion.

ic information criterion used in knot deletion and addition for regression B-
spline method when lambda== 0; 'aic' (Akaike-type) or 'sic' (Schwarz-
type); default to 'aic'.

knots.add logical; an additional step of stepwise knot addition will be per-
formed for regression B-spline if T; the default is F.

pointwise an optional three-column matrix with each row specifying one of
the following constraints: (1,xi,yi) { �tted value at xi will be >= yi;
(-1,xi,yi) { �tted value at xi will be <= yi; (0,xi,yi) { �tted value at xi
will be = yi; (2,xi,yi) { derivative of the �tted function at xi will be yi.

print.warn logical 
ag for printing of warning messages; default to T; prob-
ably needs to be set to F if performing monte carlo simulation.

print.mesg logical 
ag for printing of intermediate messages; default to T;
probably needs to be set to F if performing monte carlo simulation.

coef initial guess of the B-spline coe�cients; default to a vector of zeros.

w vector of weights the same length as x (y) assigned to both x and y;
default to uniform weights adding up to one; using normalized weights
that add up to one will speed up computation.

maxiter upper bound of the number of iteration; default to 20*n.

lstart starting value for lambda when performing parametric programming
in lambda if lambda<0; default to log(.Machine$single.xmax)**2.

factor determines how big a step to the next smaller lambda should be while
performing parametric linear programming in lambda; default to one
will give all unique lambda's; use of bigger factor (> 1& < 4) will save
time for big problems.

VALUE

coef B-spline coe�cients.

�t �tted value at z.

resid vector of residuals from the �t.

z as in input.
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knots the �nal set of knots used in the computation.

i
 exit code: 1 { ok; 2 { problem is infeasible, check speci�cation of the
pointwise argument; 3 { maxiter is reached before �nding a solu-
tion, either increase maxiter and restart the program with coef and
knots set to the value upon previous exit or use a smaller lstart value
when lambda<0 or use a smaller lambda value when lambda>0; 4
{ program aborted, numerical di�culties due to ill-conditioning.

icyc number of cycles taken to achieve convergence.

k the e�ective dimensionality of the �nal �t.

lambda the penalty parameter used in the �nal �t.

pp.lambda vector of all unique lambda's obtained from parametric pro-
gramming when lambda < 0 on input.

sic vector of Schwarz information criteria evaluated at pp.lambda.
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Figure 1a. Monotonically increasing linear regression B-splines for global
temperature at � = :1; :5; :9:
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Figure 1b. Unconstrained linear regression B-splines for global temperature
at � = :1; :5; :9:
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Figure 2a. SIC plot for the monotonically decreasing quadratic median
smoothing B-spline for FCI degradation. A good choice of � is at the global
minimizer 21:57 but a range of larger values may also be considered in this ex-
ample. The second smallest SIC value occurs at � = 239:24 whose quadratic
median smoothing B-spline �t is presented as the dotted curve in Figure 2b.
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Figure 2b. Monotonically decreasing quadratic smoothing B-splines for FCI
degradation at � = :25; :5; (:5); and :75 with � = 57:62; 21:57; (239.24) and
108 respectively. A single point in the plot may represent multiple observa-
tions at the same location.
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Figure 3a. Scatter plot of wind speed (in knots) in Dublin, Ireland.
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Figure 3b. The `periodic' constrained quadratic smoothing B-spline �ts for
� = :1; :5; and :9. The smoothing parameters are � = 26782; 136589; and
10367 respectively. The dotted lines indicate the location of the knots, which
are the �rst days of each month.
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