CHAPTER 8

Major Histocompatibility Complex (MHC)What is MHC?

- HLA
- H-2
- Minor histocompatibility antigens
- Peter Gorer & George Sneell (1940)

- MHC molecules were initially discovered during studies aimed at understanding the molecules responsible for rejection of transplanted tissues.
- Hence the name "Major Histocompatibility Complex" (MHC).
- The term "Major Histocompatibility Complex" actually refers to a region of the genome that encodes a number of genes (hence Complex) that play an important (hence Major) role in tissue transplantation (hence Histocompatibility).
- The term "MHC molecule" or "MHC antigen" refers to a molecule encoded by a gene within this region.

Significance of the MHC

role in immune response
role in organ transplantation
role in predisposition to disease!

	comp	nex		Chi	romosome 17			
Complex				H-	-2			
MHC class				I	II		\mathbb{D}	
Region	К	IA	IE	:	s	D L		
Gene products	H–2K	ΙΑ αβ	ΙΕ αβ	C' proteins	TNF-α TNF-β	H–2D	H–2L	
	-							
luman HL. Complex	A com	plex		Chro	HLA			
luman HL. Complex MHC class	A com	plex		Chro	HLA			
luman HL Complex MHC class Region	A com DP	plex II DQ	DR	Chro II C4, C	HLA J 2, BF	В	() C	A

In humans:

Class I = A, B and C (also called HLA-A, HLA-B and HLA-C) - Ag (peptide) presentation to CD8+ cells

- Class II = DP, DQ and DR (also called HLA-DP, HLA-DQ and HLA-DR) - Ag (peptide) presentation to CD4+ cells
- Class III = Complement proteins, Tumor necrosis factor (TNFs)- α , β

In the Mouse:

Class I = K, D and L molecules (also called H-2D, H-2K and H-2L)

Class II = A and E (also called I-A and I-E)

Class III = Complement proteins, Tumor necrosis factor (TNFs)- α , β

MHC- Polymorphism

- MHC loci are highly polymorphic presence of many alternative forms of the gene or alleles in the population
- Inherited from mother and father
- New haplotypes are generated by recombination

. Q

C/D

B/C

B/D

Morgan Ambe

MHC- Polymorphism

- MHC loci are highly **polymorphic** presence of many alternative forms of the gene or allele in the population
- Inherited from mother and father
- New haplotypes are generated by <u>recombination</u>

(d) A new haplotype (R) arises from recombination of maternal haplotypes

Terminology:

- **Haplotype**: set of alleles present in each parental chromosome (two sets).
- **Inbred mouse strains**: same set of alleles (homozygous) at each locus (K, IA, IE, L, D).
- Inbred strains are **SYNGENIC** = identical at <u>all</u> genetic loci
- Inbred strains have been bred by brother-sister mating for > 20 generations
- **Outbred mouse strains:** different set of alleles at each locus ~ like humans.
- **Congenic strains** = genetically identical except at <u>a single</u> loci

Mouse Strains

 Thus, the strain C57BL/6 was designated H-2^b haplotype and said to possess the 'b' allele at each MHC locus.

Thus, it is: $H-2b = K^b$, D^b , L^b , $I-A^b$, $I-E^b$

• Another strain, CBA/2 was found to possess different alleles than C57BL/10 and was arbitrarily designated as having the k haplotype (I.e. H-2^k).

Thus, it is: $H-2k = K^k$, D^k , L^k , $I-A^k$, $I-E^k$

MOUSE HAPLOTYPES – INBRED STRAINS

	HLA GENE	MICB	MICA	B	Č	E	A	G	F
HUMAN	GENE PRODUCT	MICB	MICA	HLA-B	HLA-C	HLA-E	HLA-A	HLA-G	HLA-F
			Ļ	ţ	1				
MOUSE	H-2 GENE	TAPASIN	X	D	l	Q	I	M	
moool	GENE PRODUCT	TAPASIN	H-2K	H-2D	H-2L	Q	T	H-2M	
© 2001 Black	well Publishing Ltc	l, Roitt's Essei	ntial Immunolo	gy					
© 2001 Black	well Publishing Ltc	l, Roitt's Essei	ntial Immunolo	9Y					
© 2001 Black	well Publishing Ltc	l, Roitt's Essei	ntial Immunolo	99					

Peptide-MHC Interaction	
• Peptide binding by MHC molecules <u>is not</u> as specific as antigen binding by antibodies or T cell receptors.	;
• Any particular MHC molecule will bind a large range of peptides - but only ONE at a time.	
• A given MHC molecule will bind peptides that have certain amino acids at key positions in the peptide (anchor residues).	
• Each MHC molecule binds a unique set of peptides. Keep in mind that each allelic variant also binds a unique set of peptides (Hence responder vs unlucky)!!	

MHC-Peptide Interaction

MHC-I:

- Each unique molecule (A, B or C) binds a unique set of peptides
- Single nucleated cell express 10⁵ of each class I molecule (~ 300,000 MHC-I molecules!)
- As few as 100 peptide-MHC complexes are enough to target a cell for killing by CD8+

- Requirements:

- 1) 8-11aa length,
- 2) key amino acids at positions 2 and 9

MHC-Peptide Interaction

MHC-II:

- IA, IE bind a unique set of peptides
- Although there are a few MHC-II molecules on the surface of APC, MHC-II molecules are UP-REGULATED after activation (cytokines!)

- Requirements:

- 1) Larger peptides (13-18 aa length),
- 2) Key amino acids at positions 1, 4, 6, 9

Peptide-binding grooves for class I and class II MHC are structurally similar

- Both have a peptide-binding groove
- Close-ended groove for class I MHC requires an 8-11 amino acid-length peptide to bind
- Open-ended groove for Class II MHC lets it bind a peptide 13-18 amino acids long, not all of which lie in the groove
- Anchor site rules apply to both classes in particular Class I MHC (P2 and P9)

Aspects of MHC

- 1. Recognition by T cells requires cell-cell contact.
- 2. Peptides from **cytosol** associate with class I MHC and are recognized by Tc cells.
- 3. Peptides from **endocytic** vesicles associate with class II MHC and are recognized by Th cells.

Aspects of MHC (continued)

- 3. Although there is a high degree of polymorphism for a species, an individual has maximum of six different class I MHC products and eight class II MHC products.
- 4. A peptide must associate with a given MHC of that individual, otherwise no immune response can occur. That is one level of control!!!!.

Aspects of MHC (continued)

- 4. Mature T cells must have a T cell receptor that recognizes the peptide associated with MHC. This is the second level of control!!!!.
- 5. Each MHC molecule has only <u>one</u> binding site. The different peptides a given MHC molecule can bind bind to the same site, but only one at a time.

Aspects of MHC (continued)

- MHC polymorphism is determined only in the germline. There are <u>no</u> recombination mechanisms for generating diversity.
- 7. Because each MHC molecule can bind many different peptides, binding is termed **degenerate**.
- 8. Cytokines (especially interferon-γ) increase level of expression of MHC.

Aspects of MHC (continued)

- 9. Alleles for MHC genes are **co-dominant**. Each MHC gene product is expressed on the cell surface of an individual nucleated cell.
- 10. Why the high degree of polymorphism?

Survival of species!

Crossing Inbred Strains

 $H-2b = K^{b}, D^{b}, L^{b}, I-A^{b}, I-E^{b}$ X $H-2k = K^{k}, D^{k}, L^{k}, I-A^{k}, I-E^{k}$

What would be the MHC complex of a liver cell in the F1?

In a macrophage?

Regulation of MHC Expression

- 1) Cytokines:
 - IFN- α , β , and γ \uparrow Class-I expression.
 - + IFN- γ \uparrow Class-II expression in MO and DC
 - + IL-4 \uparrow expression of MHC-II in resting B cells
 - + IFN- $\gamma \downarrow$ expression of MHC-II in B cells
- 2) Corticosteroids and Prostaglandins

 expression of MHC-II
- 3) Viruses (↓ expression of MHC-I)
 - Human cytomegalovirus (CMV)
 - Hepatitis B virus (HBV)
 - Adenovirus 12 (Ad12)

MHC and immune responsiveness:

- In many cases, the ability of an inbred mouse strain to respond to a given antigen will depend on which alleles the strain carries at its MHC loci.....low vs high responders!!

- The reason is that if an antigen cannot bind to an MHC molecule, it **cannot be presented to T cells** and therefore an immune response cannot be made to it.

> - To respond to an antigen, the **first criterion** that must be met is that the individual must have an MHC molecule that can bind and present the antigen.

> - The second criterion that must be met is that the individual must have T cells capable of responding to the antigen.

The term "restricted" is used in various other ways:

- T cells are MHC-restricted i.e. they must recognize antigen presented on self MHC.
- CD4+ T cells are class II MHC-restricted i.e. they must recognize antigen presented on self class II MHC.
- CD8+ T cells are class I MHC-restricted i.e. they must recognize antigen presented on self class I MHC.
- A particular T cell clone may be I-E^k-restricted i.e. it recognizes its antigen ONLY when presented on self I-E^k.

("restricted" = "recognizes antigen on ...")

Associations between MHC and disease

The risk of developing immunological diseases is often influenced by the presence or absence of specific MHC alleles.

Disease	Associated HLA allele	Relative risk
Ankylosing spondylitis	B27	90
Goodpasture's syndrome	DR2	16
Gluten-sensitive enteropathy	DR3	12
Hereditary hemochromatosis	A3	9.3
	B14	2.3
	A3/B14	90
Insulin-dependent diabetes mellitus	DR4/DR3	20
Multiple sclerosis	DR2	5
Myasthenia gravis	DR3	10
Narcolepsy	DR2	130
Reactive arthritis (Yersinia, Salmonella, Gonococcus)	B27	18
Reiter's syndrome	B27	37
Rheumatoid arthritis	DR4	10
Sjogren's syndrome	Dw3	6
Systemic lupus erythematosus	DR3	5
"Relative risk is calculated by dividing the frequency of the HLA allele in the in the general population: $RR = \frac{(Ag^{-1}Ag^{-1}) discase}{(Ag^{-1}Ag^{-1}) anstend}$	patient population by the frequency	

Disease	Relative Risk	Allele
Ankylosing Spondylitis	90	B27
Hereditary hemochromatosis	90	A3/B14
Narcolepsy	130	DR2

Self MHC Restriction

- Both MHC-I and MHC-II molecules can only recognize antigens when presented by SELF-MHC molecules.
- No value for individual to have T cells that recognize foreign antigen associated with <u>foreign</u> MHC
- Self MHC restriction occurs in thymus

Role of Antigen-Presenting Cells (APC)

- Helper T cells: recognize antigen after processing and presentation by MHC-II on APC (dendritic cells, macrophages, B cells).

- Cytotoxic T cells: recognize antigen when it is presented on MHC-I.

- Since most nucleated cells in the body express class I MHC, most cells in the body can present antigen to cytotoxic T cells. Although they are presenting antigen, these cells are usually not referred to as "antigen-presenting cells". If they are presenting antigen that will cause them to be killed by cytotoxic T cells, they are referred to as "target cells".

Antigen presenting cells

- Remember: 1) MHC-II, 2) deliver co-stimulatory signals
- **Professional APC: DC> MΦ > B cells, why?**
 - DC: Always express high levels of MHC-II molecules and co-stimulatory activity (B7 molecule)
 - MΦ: requires activation to up-regulate MHC-II molecules and co-stimulatory molecules (B7 molecules)
 - B cells: always express MHC-II molecules but needs to be activated to express co-stimulatory activity (B7 molecule)

TABLE 8-1	Antigen-presentin	ng cells	Same and V
Professional ant	igen-presenting cells	Nonprofessional antiger	n-presenting cells
Dendritic cells (several types)	Fibroblasts (skin)	Thymic epithelial cells
Macrophages		Glial cells (brain)	Thyroid epithelial cells
B cells		Pancreatic beta cells	Vascular endothelial cells

Ag processing is required

- Classical experiment showing that B and T cells have different requirement for antigen recognition.
- Processing is required for Th activation
- Processing is a metabolic active process

Points Concerning Antigen Processing and Presentation

- 1. Location of pathogen
- viruses in cytosol, MHC class I pathway, Tc response (Cytosolic pathway)
- extracellular bacteria, MHC class II pathway, Th2 response → Ab formation (Endocytic pathway)
- intracellular bacteria, MHC class II pathway, Th1 response → cellular response (Endocytic pathway)

Endogenous Pathway

- Peptides are generated by **proteasome** degradation
- Peptides are transported from cytosol to the RER
- Peptides loading onto MHC-I is aided by chaperones

The endocytic antigen processing pathway - processing of externally-derived peptides

Three major events occur in the endosomal pathway:

- 1) Degradation of material that was $taken \ in - \underline{endosome} \ goes \ through$ acidification and fusion with lysosome which contain a wide array of degradative enzymes
- 2) Loading of peptides from this material on to class II MHC
- 3) Transport of class II MHC peptide complexes back to the cell surface Figure 5-18

The endocytic antigen processing pathway - processing of externally-derived peptides The endosomal compartment is completely separate from the endoplasmic reticulum ---> So, externally derived peptides are usually not loaded on to MHC-I. Figure 5-18

Presentation of Non-Peptide Antigens

- CD1 molecules (5, CD1a-e)
- Structurally related to MHC-I
- Encoded outside the MHC region
- Present in APC (DC>MØ>B cells)
- Presents peptides of 12-22 aa in size
- Presents to CD4, CD8 and NK cells
- Present LIPIDS and GLYCOLIPIDS
- Third Ag-processing pathway?

- 2. Peptides derived from both <u>self</u> and <u>non-self</u> proteins can associate with MHC class I and class II molecules.
- 3. Chemical nature of MHC groove determines which peptides it will bind.