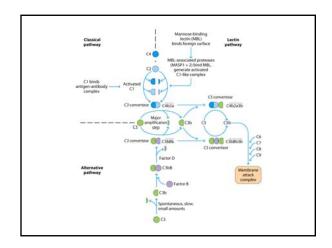
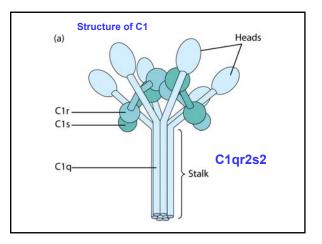
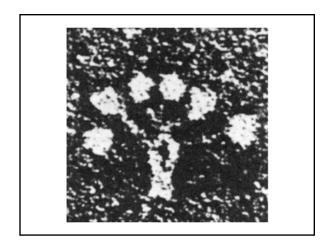


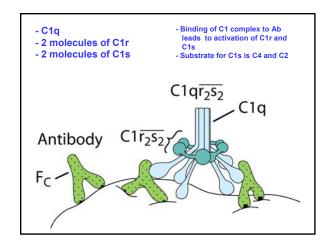
History

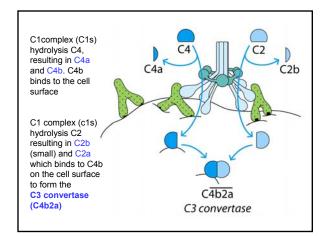
- Jules Border in 1890's discovered complement
- · Paul Ehrlich coined the term "complement"
- "The activity of blood serum that completes the action of antibody"
- Now: "Set of serum proteins that act in a cascade fashion to increase the immune response"

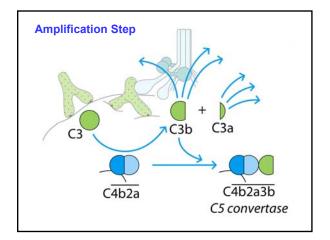


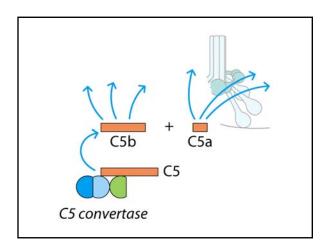

Complement Components

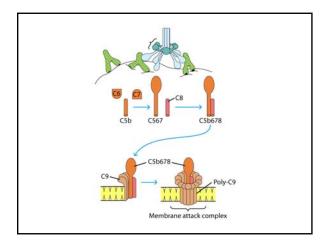

- Over 20 serum proteins
- Cascade fashion
- Components designated: C1 C9
- Proteolysis results in: Large fragments "b" and smaller fragments "a" → C3a, C5b
- The only exception is C2, where C2a is the large fragment and C2b is the smaller fragment and diffuses away

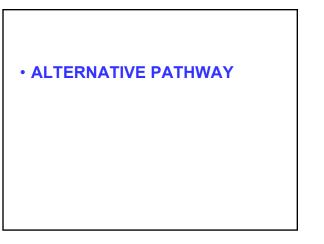

Complement Pathways

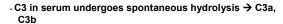

- 1) Classical Pathway activated by antigen-antibody interaction. Best Ab for complement activation: IgM, IgG1, IgG2
- 2) Alternative pathway activated by C3b binding to microbial cell surfaces
- 3) Lectin pathway binding of the lectin mannose-binding lectin to the surface of pathogens.

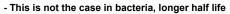


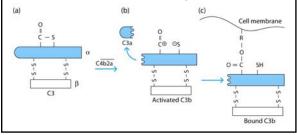












- The half life of these products is very short, except...
- C3b can bind to host and bacterial cell surfaces
- Mammals have high levels of sialic acid \rightarrow inactivation of C3b

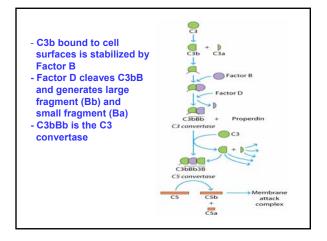
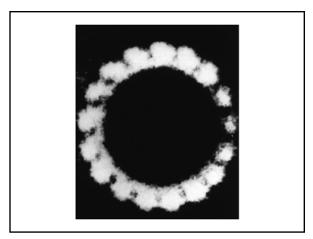
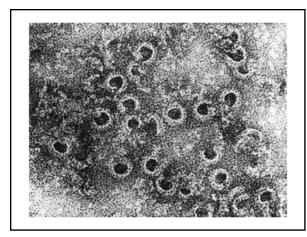


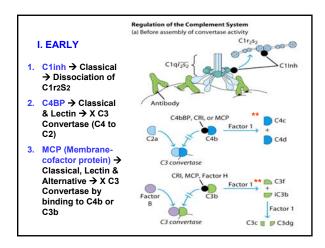
TABLE 13-1	Initiators of the alternative pathway of complement activation
PATHOGEN	IS AND PARTICLES OF MICROBIAL ORIGIN
Many strains of	gram-negative bacteria
Lipopolysacchar	ides from gram-negative bacteria
Many strains of	gram-positive bacteria
Teichoic acid fro	m gram-positive cell walls
Fungal and yeas	t cell walls (zymosan)
Some viruses an	nd virus-infected cells
Some tumor cell	ls (Raji)
Parasites (trypar	nosomes)

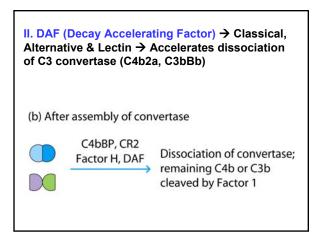

TABLE 13-1	Initiators of the alternative pathway of complement activation
á.	NONPATHOGENS
Human IgG, IgA	, and IgE in complexes
Rabbit and guine	ea pig IgG in complexes
Cobra venom fa	tor
Heterologous er	ythrocytes (rabbit, mouse, chicken)
Anionic polymer	s (dextran sulfate)
Pure carbohydra	tes (agarose, inulin)
	from M. K. Pangburn, 1986, in <i>Immunobiology of the</i> n, Academic Press.

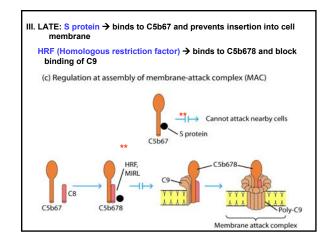

I

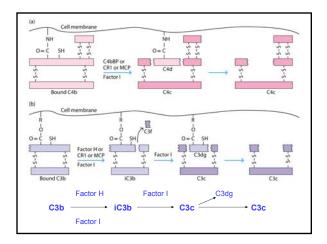
Lectin Pathway

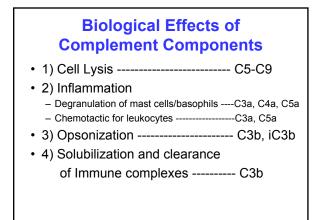
- · Lectins are carbohydrate-binding proteins
- · Does not require antibody
- · Recognizes mannose residues on glycoproteins
- The mannose binding lectin (MBL) is an acute phase protein that increases during inflammation
- · Plays a similar role to that of C1q
- After binding of C1q to cell surfaces, associates with MBL-associated serine proteases (MASP-1 and MASP-2).
- This complex activates C4 and C2 just as in the classical pathway
- MASP-1 and MASP very similar to C1r and C1s

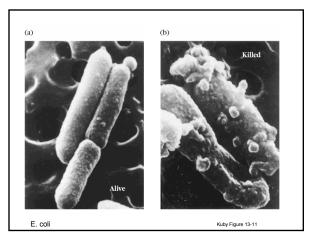

Biological Effects of Complement Components


- 1) Cell Lysis ----- C5-C9
- 2) Inflammation
 - Degranulation of mast cells/basophils ----C3a, C4a, C5a
 Chemotactic for leukocytes -----C3a, C5a
- 3) Opsonization ----- C3b, iC3b
- 4) Solubilization and clearance of Immune complexes ------ C3b


Regulation of Complement


Protein	Type of protein	Pathway affected	Immunologic function
C1 inhibitor (C1Inh)	Soluble	Classical	Serine protease inhibitor: causes C1r ₂ s, to dissociate from C1q
C4b-binding protein (C4bBP)*	Soluble	Classical and lectin	Blocks formation of C3 convertase by binding C4b; cofactor for cleavage of C4b by factor I
Factor H*	Soluble	Alternative	Blocks formation of C3 convertase by binding C3b; cofactor for cleavage of C3b by factor I
Complement-receptor type 1 (CR1)* Membrane-cofactor protein (MCP)*	Membrane bound	Classical, alternative, and lectin	Block formation of C3 convertase by binding C4b or C3b; cofactor for factor I-catalyzed cleavage of C4b or C3b C3bBb
Decay-accelerating factor (DAE or CD55)*	Membrane bound	Classical, alternative, and lectin	Accelerates dissociation of C4b2a and C3bBb (classical and alternative C3 convertases)


Protein	Type of protein	Pathway affected	Immunologic function
Factor-I	Soluble	Classical, alternative, and lectin	Serine protease: cleaves C4b or C3b using C4bBP, CR3, factor H, DAE, or MCP as cofactor
S protein	Soluble	Terminal	Binds soluble C5b67 and prevents its insertion into cell membrane
Homologous restriction factor (HRF) Membrane inhibitor of reactive hysis (MIRL or CDS9)*	Membrane bound	Terminal	Bind to C5b678 on autologous cells, blocking binding of C9
Anaphylatoxin inactivator	Soluble	Effector	Inactivates anaphylatoxin activity of C3a, C4a, and C5a by carboxypeptidase N removal of C-terminal Arg

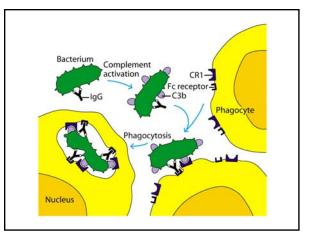

What is the point of all this?? ...3 major functions of complement activation:

- 1. Phagocytic cells have receptors for C3b and iC3b. Phagocytosis of cells coated with C3b is enhanced. (I.e. C3b is an opsonin)
- C3a (and C5a) are anaphylatoxins I.e. they act on macrophages, neutrophils, basophils and mast cells to promote chemotaxis of these cells (particularly neutrophils) to the site, degranulation and the respiratory burst. This creates a local inflammatory response that damages any pathogens in the vicinity (and also host tissue).
- 2. Further enzyme reactions produce a complex (the membrane attack complex, MAC) that creates pores in the microbial cell membrane, resulting in lysis and death of the cell.

Effect	Complement product mediating*
Cell lysis	CSb-9, the membrane-attack complex (MAC)
Inflummatory response Degranulation of existencial basephils ¹ Degranulation of existencial technologies and the Aggregation of planetes Aggregation of planetes aggregation of planetes aggregation of planetes of their systemic aggregation of the aggregation of their systemic enzyments from toose marrow Release of Mediopolitic from toose marrow Release of Mediopolitic enzyments from neutrophils Increased expression of complement receptors type 1 and 3 (CB) on enclophils	C3a,C4a, and C5a (anaphylatoxins) C3a, C5a C3a, C5a, C5667 C3a, C5a D6 C3a C5a C5a C5a
Opsonization of particulate antigens, increasing their phagocytosis	C3b, C4b, iC3b
Viral neutralization	C3b, C5b-9 (MAC)
Solubilization and clearance of immune complexes *Boldfaced component is most important in mediating indicated effect. *Degranulation leads to release of histamine and other mediators that induce contraction	C3b

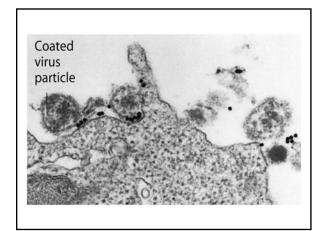
Complement Receptors			
Receptors	Ligand	Cells	
• CR1	C3b	RBC – Phagocytes	
• CR2*	C3d, iC3b	B cells*	
• CR3	iC3b	Phagocytes, NK cells	
• CR4	iC3b	Phagocytes, NK cells	
• C3a/C4a • C5a	C3a, C4a C5a	Mast cells, Basophils Mast cells, Basophils, Phagocytes	

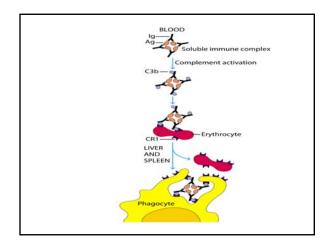
Receptor	Major ligands	Activity	Cellular distribution
CR1 (CD35)	C3b, C4b	Blocks formation of C3 convertase; binds immune complexes to cells	Erythrocytes, neutrophils, monocytes, macrophages, eosinophils, follicular dendritic cells, B cells, some T cells
CR2 (CD21)	C3d, C3dg,* iC3b	Part of B-cell coreceptor; binds Epstein-Barr virus	B cells, follicular dendritic cells, some T cells
CR3 (CD11b/18) CR4 (CD11c/18)	iC3b	Bind cell-adhesion molecules on neutrophils, facilitating their extravasation; bind immune complexes, enhancing their phagosytosis	Monocytes, macrophages, neutrophils, natural killer cells, some T cells
C3a/C4a receptor	C3a, C4a	Induces degranulation of mast cells and basophils	Mast cells, basophils, granulocytes
C5a receptor	CSa	Induces degranulation of mast cells and basophils	Mast cells, basophils, granulocytes, monocytes, macrophages, platelets, endothelial cells

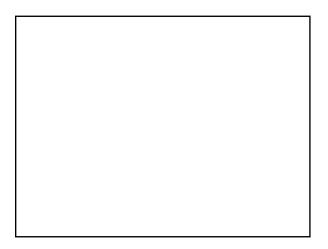

Microbial Evasion

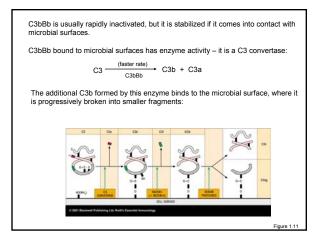
- · Gram negative bacteria:
 - Long LPS
 - Outer membrane
 - Elastase (C3a and C5a are inactivated)
- Gram positive bacteria:
 - Peptidoglycan in cell wall
 - Capsule

Microbial component	Mechanism of evasion	Examples
	GRAM-NEGATIVE BACTERIA	
Long polysaccharide chains in cell-wall LPS*	Side chains prevent insertion of MAC into bacterial membrane*	Resistant strains of E. coli and Solmonella
Outer membrane protein	MAC interacts with membrane protein and fails to insert into bacterial membrane	Resistant strains of Neisseria gonomhoeae
Uastase	Anaphylatoxins CBa and CSa are inactivated by microbial elastase	Pseudomonas aeruginosa
	GRAM-POSITIVE BACTERIA	
Peptidoglycan layer of cell wall	Insertion of MAC into bacterial membrane is prevented by thick layer of peptidoglycan	Streptococcus
Bacterial capsule	Capsule provides physical barrier between C3b deposited on bacterial membrane and CR1 on phagocytic cells*	Streptococcus pneumoniae
	OTHER MICROBES	
Proteins that mimic complement regulatory proteins	Protein present in various bacteria, viruses, fungi, and protozoans inhibit the complement cascade	Vaccinia virus, herpes simplex, Epistein-Barr virus, Trypanosoma cruzi, Candida albicani

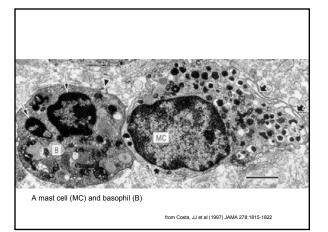

Deficiencies:

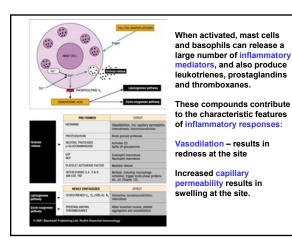

- Systemic lupus erythomatosus (SLE) is an autoimmune disease that results in tissue damage due to complement activation by Ag-Ab complexes
- C1, C2, C4 and CR1 predispose to SLE
- Lack of C4 results in 90% of SLE
- Deficiencies in C1, C2 and C4 results in low levels of C3b required for clearance of Ag-Ab complexes.

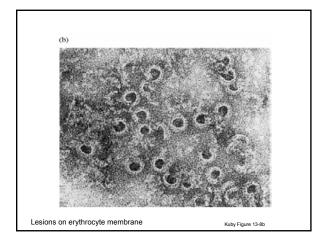


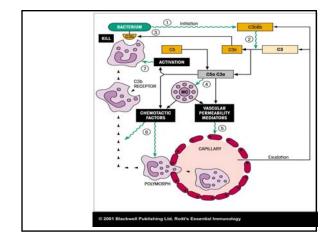

What is the point of all this?? ...3 major functions of complement activation:

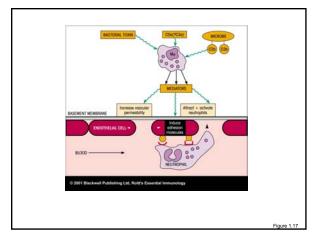
- 1. Phagocytic cells have receptors for C3b and iC3b. Phagocytosis of cells coated with C3b is enhanced. (I.e. C3b is an opsonin)
- C3a and C5a are anaphylatoxins I.e. they act on macrophages, neutrophils, basophils and mast cells to promote chemotaxis of these cells (particularly neutrophils) to the site, degranulation and the respiratory burst. This creates a local inflammatory response that damages any pathogens in the vicinity (and also host tissue).
- 3. Further enzyme reactions produce a complex (the membrane attack complex, MAC) that creates pores in the microbial cell membrane, resulting in lysis and death of the cell.






- 1. Phagocytic cells have receptors for C3b (CR1) and iC3b (CR3, CR4). Phagocytosis of cells coated with C3b is enhanced. (i.e. C3b is an opsonin)
- C3a (and C5a) are anaphylatoxins I.e. they act on macrophages, neutrophils, basophils and mast cells to promote chemotaxis of these cells (particularly neutrophils) to the site, degranulation and the respiratory burst. This creates a local inflammatory response that damages any pathogens in the vicinity (and also host tissue).





What is the point of all this?? ...3 major functions of complement activation:

- 1. Phagocytic cells have receptors for C3b and iC3b. Phagocytosis of cells coated with C3b is enhanced. (I.e. C3b is an opsonin)
- C3a (and C5a) are anaphylatoxins I.e. they act on macrophages, neutrophils, basophils and mast cells to promote chemotaxis of these cells (particularly neutrophils) to the site, degranulation and the respiratory burst. This creates a local inflammatory response that damages any pathogens in the vicinity (and also host tissue).
- 2. Further enzyme reactions produce a complex (the membrane attack complex, MAC) that creates pores in the microbial cell membrane, resulting in lysis and death of the cell.

