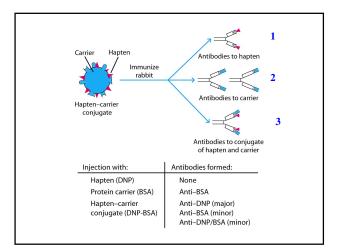
Chapter 3. Antigens

Terminology:

Antigen: Substances that can be recognized by the surface antibody (B cells) or by the TCR (T cells) when associated with MHC molecules

Immunogenicity VS Antigenicity:

<u>Immunogenicity</u> – ability to induce an antibody and/or cell-mediated immune response


Antigenicity – ability to combine with the final products of the response (antibodies and/or T cell receptor)

NOTE: Most immunogenic molecules are also antigenic

<u>Hapten</u> - a small molecule that is <u>antigenic</u> but not (by itself) immunogenic.

Antibodies can be made to haptens only after the hapten is covalently conjugated to a large protein "carrier".

Figure 5

Factors that influence immunogenicity:

- Foreign-ness non-self (far apart evolutionary)
- Type of molecule (chemical nature) protein > polysaccharide > lipid > nucleic acid
- Size larger molecules tend to be more immunogenic
- -Composition heterogeneity increases immunogenicity.
 4ry > 3ry > 2ry > 1ry structure
- -<u>Degradability</u> protein antigens must be degraded (phagocytosis) in order to be presented to helper T cells.
- Physical Form Denatured > Native

TABLE 3-1 MOLECULAR WEIGHT OF SOME COMMON EXPERIMENTAL ANTIGENS USED IN IMMUNOLOGY

Antigen	Approximate molecular mass (Da)
Bovine gamma globulin (BGG)	150,000
Bovine serum albumin (BSA)	69,000
Flagellin (monomer)	40,000
Hen egg-white lysozyme (HEL)	15,000
Keyhole limpet hemocyanin (KLH)	>2,000,000
Ovalbumin (OVA)	44,000
Sperm whale myoglobin (SWM)	17,000
Tetanus toxoid (TT)	150,000

Additional factors that influence the immune response:

- Genetics of the recipient (genotype MHC)
- Dosage of the antigen (optimal dose tolerance)
- Number of doses of the antigen (boosters)
- Route of administration of the antigen
 - intravenous (spleen)
 - subcutaneous (lymph nodes)
 - intraperitoneal (lymph nodes)
 - oral (mucosal)
 - inhaled (mucosal)
- Use of adjuvant

Adjuvant: a substance that, when mixed with an antigen and injected with it, serves to enhance the immune response to the antigen.

Possible mechanisms of action of adjuvants:

- <u>Prolong the persistence of the antigen</u>, thus giving the immune system more time to respond
- Increase the "size" of the antigen by causing aggregation,
- Stimulate lymphocyte proliferation and/or activation
- Stimulate a <u>local inflammatory response</u>, thus recruiting cells to the site of the antigen (GRANULOMA)
- Enhance co-stimulatory signals

Commonly used adjuvants: (Table 3.3)

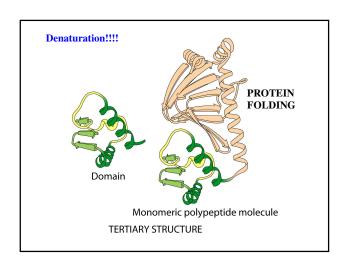
Alum - aluminum potassium sulfate - precipitates the antigen, resulting in increased persistence of the antigen and induces mild granuloma.

Incomplete Freund's adjuvant - mineral oil-based - increases persistence of the antigen, mild granuloma, and induces costimulatory signals

Complete Freund's Adjuvant - mineral oil-based adjuvant containing dead bacteria - increases persistence of the antigen, stimulates a chronic inflammatory response (granuloma), and co-stimulatory signals

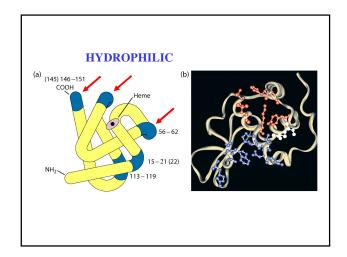
Bacterial Lipopolysaccharides - stimulate nonspecific lymphocyte activation and proliferation, and costimulatory signals.

Epitope or Antigenic Determinant - the region of an antigen that binds to a T cell receptor or a B cell receptor (antibody).

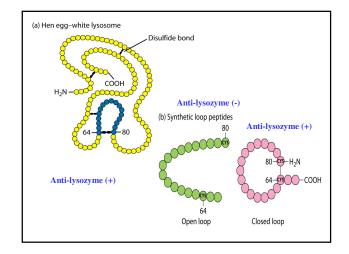

- Since an epitope is the part of the antigen that binds to the B cell or T cell antigen receptor, it is the part that determines the antigenicity of the antigen - thus the term "antigenic determinant".
- -T and B cells recognize different epitopes on an antigen

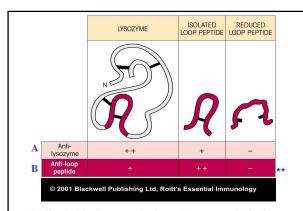
epitopes of glycoprotein antigen glycoprotein antigen epitopes of glycoprotein antigen epitopes

- Each different protein and glycoprotein of a virus (or bacterium or foreign cell) constitutes a different antigen
- Each different antigen contains a number of different epitopes


Properties of B cell epitopes (Table 3-4)

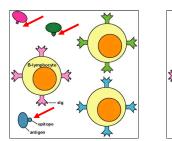
- Usually dependent on the native, tertiary conformation of the antigen (PROTEIN FOLDING)
- Must be accessible tend to be on the "surface" of the antigen (hydrophilic)
- May be made of sequential or non-sequential amino acid sequences (epitopes made up of non-sequential amino acid sequences are called "conformational epitopes").
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.

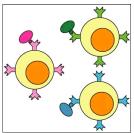

Properties of B cell epitopes (Table 3-4)


- Usually dependent on the native, tertiary conformation of the antigen
- Must be accessible tend to be on the "surface" of the antigen (hydrophilic)
- May be made of sequential or non-sequential amino acid sequences (epitopes made up of non-sequential amino acid sequences are called "conformational epitopes").
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.

Properties of B cell epitopes (Table 3-4)

- Usually dependent on the native, tertiary conformation of the antigen
- Must be accessible tend to be on the "surface" of the antigen (hydrophilic)
- May be made of sequential or non-sequential amino acid sequences (epitopes made up of non-sequential amino acid sequences are called "conformational epitopes").
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.





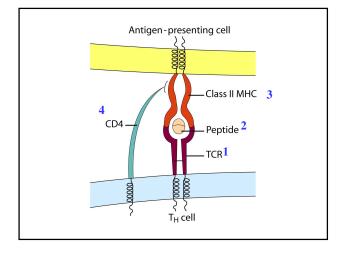
Antibody binding may be lost after a protein is denatured!
 ???

Properties of B cell epitopes (Table 3-4)

- Usually dependent on the native, tertiary conformation of the antigen
- Must be accessible tend to be on the "surface" of the antigen (hydrophilic)
- May be made of sequential or non-sequential amino acid sequences (epitopes made up of non-sequential amino acid sequences are called "conformational epitopes").
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.

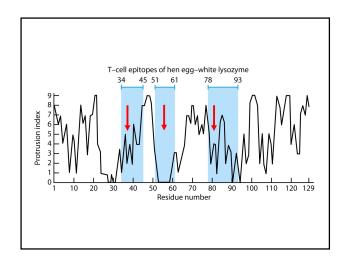
"B-lymphocytes have sIg molecules on their surface that recognize epitopes directly on antigens. Different B-lymphocytes are programmed to produce different molecules of sIg, each specific for a unique epitope."

animation and pictures from http://www.cat.cc.md.us/courses/bio141/lecguide/unit3/epsig.html

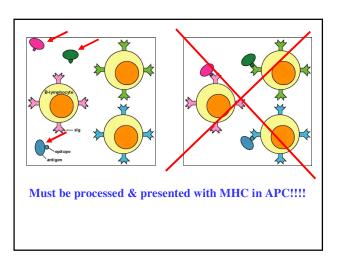

Properties of B cell epitopes (Table 3-4)

- Usually dependent on the native, tertiary conformation of the antigen
- Must be accessible tend to be on the "surface" of the antigen (hydrophilic)
- May be made of sequential or non-sequential amino acid sequences (epitopes made up of non-sequential amino acid sequences are called "conformational epitopes").
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.

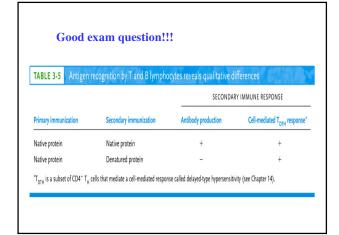
Large antigens contain multiple, overlapping B cell epitopes. Amino acids 1-12 — Epitope 1 Amino acids 8-20 — Epitope 2 Amino acids 19-33 — Epitope 3 1 10 20 30 110 Linear or Sequential Antigen Would this cause cross-reactivity?


Properties of T cell epitopes (Table 3-4)

- Involves a tertiary complex: T cell receptor, antigen, and MHC molecule
- Must be accessible tend to be on the "surface" of the antigen (hydrophilic)
- May be made of sequential or non-sequential amino acid sequences (epitopes made up of non-sequential amino acid sequences are called "conformational epitopes").
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.


Properties of T cell epitopes (Table 3-4)

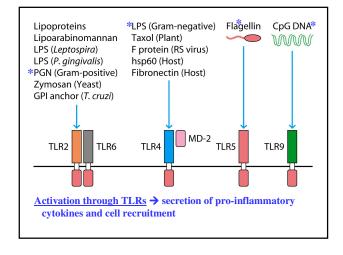
- Involves a tertiary complex: T cell receptor, antigen, and MHC molecule
- Internal linear peptides (hydrophobic) produced by processing and bound to MHC molecules
- Binds to soluble antigen, No MHC molecule requirement
- Large antigens contain multiple, overlapping B cell epitopes.


Properties of T cell epitopes (Table 3-4)

- Involves a tertiary complex: T cell receptor, antigen, and MHC molecule
- Internal linear peptides (hydrophobic) produced by processing and bound to MHC molecules
- Does not bind to soluble antigen, APC processing
- Recognize mostly proteins but some lipids and glycolipids can be presented on MHC-like molecules

Properties of T cell epitopes (Table 3-4)

- Involves a tertiary complex: T cell receptor, antigen, and MHC molecule
- Internal linear peptides (hydrophobic) produced by processing and bound to MHC molecules
- Does not bind to soluble antigen, APC processing
- Recognize mostly proteins but some lipids and glycolipids can be presented on MHC-like molecules (remember CD1 molecules!)


Pattern-Recognition Receptors (PRR)

- Receptors of the innate immune system
- Recognize unique antigens (motifs) in microorganisms (Danger Signals!!!)
- These antigens are absent in the host (non-self)
- Several Patter-Recognition Receptors (PRRs) identified
- BIO401: Toll-like receptors (TLRs)

PAMP	PRR	Biological Consequence of Interaction
Microbial cell wall components	Complement	Opsonization; Complement activation
Mannose- containing carbohydrates	Mannose-binding protein	Opsonization; Complement activation
Polyanions	Scavenger receptors	Phagocytosis
Lipoproteins of Gram + bacteria Yeast cell wall components	TLR-2 (Toll-like receptor 2)	Macrophage recruitment & activation; Secretion of inflammatory cytokines

PAMP	PRR	Biological Consequence of Interaction
Double stranded RNA	TLR-3	Production of interferon (antiviral)
LPS (lipopolysaccharide of Gram – bacteria	TLR-4	Macrophage recruitment & activation; Secretion of inflammatory cytokines

PAMP	PRR	Biological Consequence of Interaction
Flagellin (bacterial flagella)	TLR-5	Macrophage recruitment & activation; Secretion of inflammatory cytokines
CpG motifs in prokaryotes	TLR-9	Macrophage recruitment & activation; Secretion of inflammatory cytokines

