CHAPTER 8

- ➤ Major Histocompatibility Complex (MHC)
- ➤ What is MHC?
 - HLA
 - H-2
 - Minor histocompatibility antigens
 - Peter Gorer & George Sneell (1940)

Significance of the MHC

≻role in immune response

- > role in organ transplantation
- ➤ role in predisposition to disease

- MHC molecules were initially discovered during studies aimed at understanding the molecules responsible for rejection of transplanted tissues.
- Hence the name "Major Histocompatibility Complex" (MHC).
- The term "Major Histocompatibility Complex" actually refers to a region of the genome that encodes a number of genes (hence Complex) that play an important (hence Major) role in tissue transplantation (hence Histocompatibility).
- The term "MHC molecule" or "MHC antigen" refers to a molecule encoded by a gene within this region.

Nouse H-2 complex Chromosome 17								
Complex	H-2							
MHC class	1	(I	1			
Region	К	IA	IE	S		D L		
Gene	H-2K	IA	ΙΕ αβ	C' proteins	TNF-α TNF-β	H-2D H-2		
products		αβ	υ.p		пи-р			
products Human HL			αр	Chro	mosome 6			
			ф	Chro	<u>'</u>			
luman HL.			ф	Chro	mosome 6			
luman HL		plex	DR		mosome 6 HLA	В	(I)	A

In humans:

Class I = A, B and C (also called HLA-A, HLA-B and HLA-C)

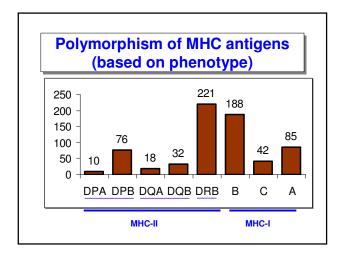
- Ag (peptide) presentation to CD8+ cells

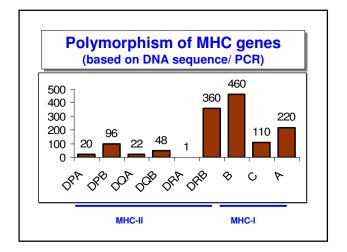
Class II = DP, DQ and DR (also called HLA-DP, HLA-DQ and HLA-DR)

- Ag (peptide) presentation to CD4+ cells

Class III = Complement proteins, Tumor necrosis factor (TNFs)- α , β

In the Mouse:

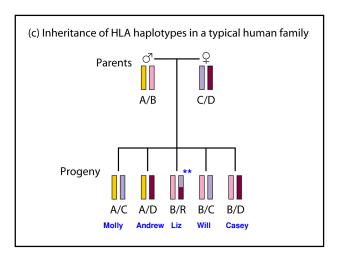

Class I = K, D and L molecules (also called H-2D, H-2K and H-2L)


Class II = A and E (also called I-A and I-E)

Class III = Complement proteins, Tumor necrosis factor (TNFs)- α , β

MHC-Polimorphism

- MHC loci are highly polymorphic presence of many alternative forms of the gene or alleles in the population
- Inherited from mother and father
- New haplotypes are generated by recombination



MHC polymorphism The loci that encode class I and class II MHC molecules are the most polymorphic known in higher vertebrates. Within any species, there are many different alleles for each class I and class II MHC molecule. Humans: HLA Class-I genes: A (240), B (470), C (110) alleles (1.2 x 107) HLA Class-II genes: DP= DPB1 (96) alleles DQ= DQA1 (22), DQB1 (49) alleles DR= DRB1 (304), DRB1 (1), DRB1 (35), DRB1 (11), DRB1 (15) alleles 1.8 x 1011 different Class II combinations, and (1.2 x 107) x (1.8 x 1011) = 2.25 x 1018 different combinations of

Class I and Class II possible combinations

MHC- Polimorphism

- MHC loci are highly polymorphic –
 presence of many alternative forms of the
 gene or allele in the population
- · Inherited from mother and father
- New haplotypes are generated by recombination

MHC-Polimorphism

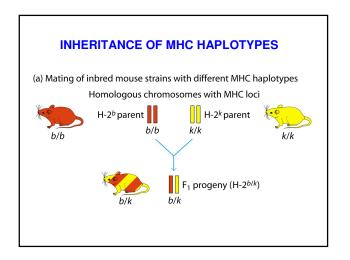
- MHC loci are highly polymorphic –
 presence of many alternative forms of the
 gene or allele in the population
- Inherited from mother and father
- New haplotypes are generated by recombination

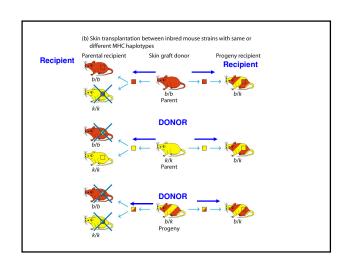
(d) A new haplotype (R) arises from recombination of maternal haplotypes								
		HLA Alleles						
		Α	В	С	DR	DQ	DP	
	Α	1	7	w3	2	1	1	
Haplotypes	В	2	8	w2	3	2	2	
	C	3	44	w4	4	1	3	
	D	11	35	w1	7	3	4	
	→ R	3	44	w4	7	3	4	

Terminology:

- **Haplotype**: set of alleles present in each parental chromosome (two sets).
- Inbred mouse strains: same set of alleles (homozygous) at each locus (K, IA, IE, L, D).
- Inbred strains are **SYNGENIC** = identical at all genetic loci
- Inbred strains have been bred by brother-sister mating for > 20 generations
- Outbred mouse strains: different set of alleles at each locus ~ like humans.
- **Congenic strains** = genetically identical except at <u>a single</u> loci

Mouse Strains


Thus, the strain C57BL/6 was designated H-2^b haplotype and said to possess the 'b' allele at each MHC locus.


Thus, it is: $H-2b = K^b$, D^b , L^b , $I-A^b$, $I-E^b$

 Another strain, CBA/2 was found to possess different alleles than C57BL/10 and was arbitrarily designated as having the k haplotype (I.e. H-2^k).

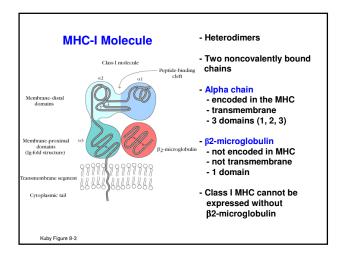
Thus, it is: $H-2k = K^k$, D^k , L^k , $I-A^k$, $I-E^k$

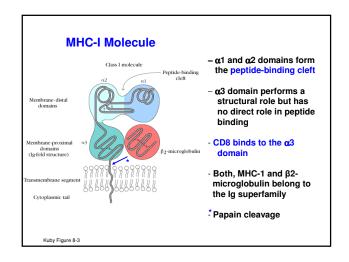
Summary:

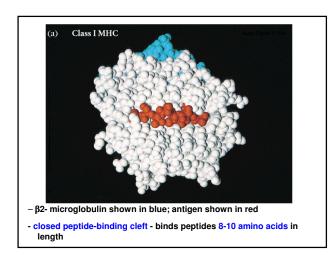
There are three broad classes of MHC molecules:

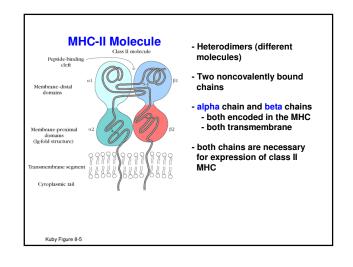
Class I MHC:

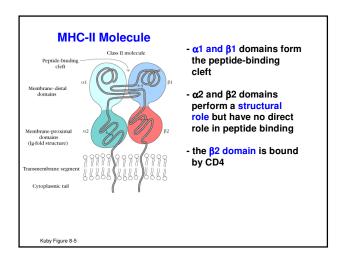
- bind and present internally-derived peptide antigens to CD8+ cytotoxic T cells
- expressed on virtually all nucleated cells

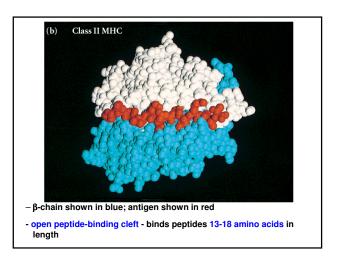

Class II MHC:

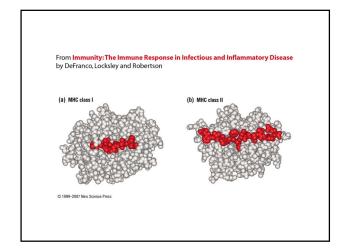

- present externally-derived peptides to CD4+ helper T cells
- expressed only on antigen-presenting cells (APC)

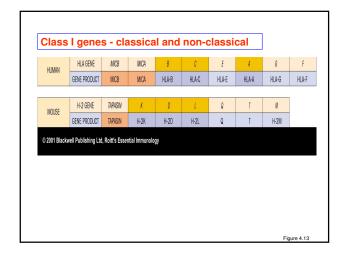

Class III MHC: any other molecule encoded within the MHC - many types

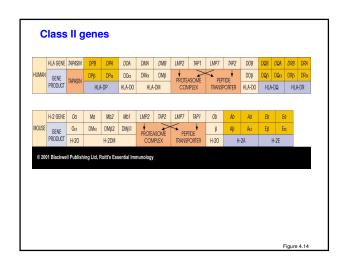

The MHC of humans is also referred to as the HLA complex.

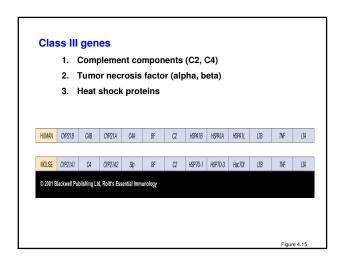

The MHC of mice is also referred to as the H-2 complex.

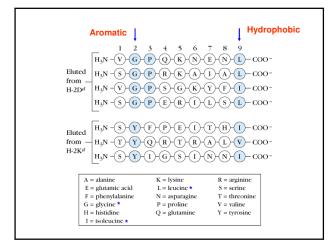











Peptide-MHC Interaction

- Peptide binding by MHC molecules is not as specific as antigen binding by antibodies or T cell receptors.
- Any particular MHC molecule will bind a large range of peptides - but not all peptides.
- A given MHC molecule will bind peptides that have certain amino acids at key positions in the peptide (anchor residues).
- Each MHC molecule binds a unique set of peptides. Keep in mind that each allelic variant also binds a unique set of peptides!!

MHC-Peptide Interaction

MHC-I:

- Each unique molecule (A, B or C) binds a unique set of peptides
- Single nucleated cell express 10⁵ of each class I molecule
- As few as 100 peptide-MHC complexes are enough to target a cell for killing by CD8+
- Requirements:
 - 1) 8-10aa length,
 - 2) key amino acids at positions 2 and 9

Peptide-binding grooves for class I and class II MHC are structurally similar

- Both have a peptide-binding groove
- Close-ended groove for class I MHC requires an 8-10 amino acid-length peptide to bind
- Open-ended groove for Class II MHC lets it bind a peptide 13-18 amino acids long, not all of which lie in the groove
- Anchor site rules apply to both classes in particular Class I MHC (P2 and P9)

Aspects of MHC

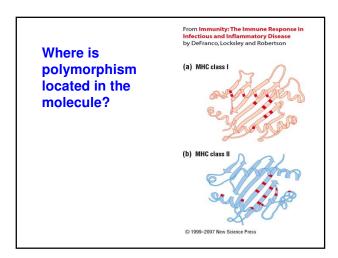
- 1. Recognition by T cells requires cell-cell contact.
- 2. Peptides from cytosol associate with class I MHC and is recognized by Tc cells.
- 3. Peptides from endocytic vesicles associate with class II MHC and is recognized by Th cells.

Aspects of MHC (continued)

- 3. Although there is a high degree of polymorphism for a species, an individual has maximum of six different class I MHC products and eight class II MHC products.
- 4. A peptide must associate with a given MHC of that individual, otherwise no immune response can occur. That is one level of control.

Aspects of MHC (continued)

- 4. Mature T cells must have a T cell receptor that recognizes the peptide associated with MHC. This is the second level of control.
- 5. Each MHC molecule has only <u>one</u> binding site. The different peptides a given MHC molecule can bind all bind to the same site, but only one at a time.


Aspects of MHC (continued)

- 6. MHC polymorphism is determined only in the germline. There are <u>no</u> recombination mechanisms for generating diversity.
- 7. Because each MHC molecule can bind many different peptides, binding is termed **degenerate**.
- 8. Cytokines (especially interferon-γ) increase level of expression of MHC.

Aspects of MHC (continued)

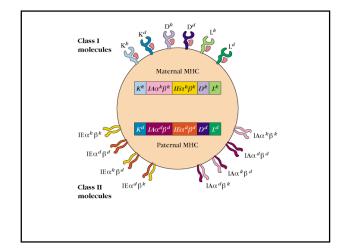
- Alleles for MHC genes are co-dominant.
 Each MHC gene product is expressed on the cell surface of an individual nucleated cell.
- 10. Why the high degree of polymorphism?

Survival of species!

(a) Mating of inbred mouse strains with different MHC haplotypes Homologous chromosomes with MHC loci H-2^b parent b/b H-2^k parent k/k F₁ progeny (H-2^{b/k})

Crossing Inbred Strains

$$\begin{aligned} \textbf{H-2b} &= \textbf{K}^b, \textbf{D}^b, \textbf{L}^b, \textbf{I-A}^b, \textbf{I-E}^b \\ \textbf{X} \\ \textbf{H-2k} &= \textbf{K}^k, \textbf{D}^k, \textbf{L}^k, \textbf{I-A}^k, \textbf{I-E}^k \end{aligned}$$


What would be the MHC complex of a liver cell in the F1?

In a macrophage?

- 6 MHC-I molecules: K^k K^b, D^k D^b, L^k L^b

- 8 MHC-II molecules:

$$\begin{split} & IA\alpha^k\beta^k, IA\alpha^b\beta^b, IA\alpha^k\beta^b, IA\alpha^b\beta^k, \\ & IE\alpha^k\beta^k, IE\alpha^b\beta^b, IE\alpha^k\beta^b, IE\alpha^b\beta^k, \end{split}$$

Regulation of MHC Expression

- 1) Cytokines:
 - IFN- α , β , and γ \uparrow Class-I expression.
 - IFN- γ \uparrow Class-II expression in MO and DC
 - IL-4 ↑ expression of MHC-II in resting B cells
 - IFN- γ ↓ expression of MHC-II in B cells
- 2) Corticosteroids and Prostaglandins
 - ↓ expression of MHC-II
- 3) Viruses (\precedet expression of MHC-I)
 - Human cytomegalovirus (CMV)
 - Hepatitis B virus (HBV)
 - Adenovirus 12 (Ad12)

MHC and immune responsiveness:

- In many cases, the ability of an inbred mouse strain to respond to a given antigen will depend on which alleles the strain carries at its MHC loci.....low vs high responders!!
- The reason is that if an antigen cannot bind to an MHC molecule, it cannot be presented to T cells and therefore an immune response cannot be made to it.

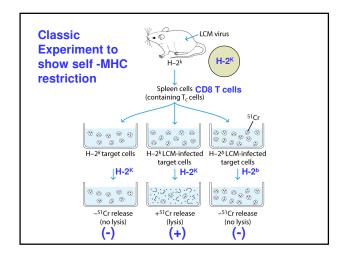
To respond to an antigen, the **first criterion** that must be met is that the individual must have an MHC molecule that can bind and present the antigen.

The **second criterion** that must be met is that the individual must have T cells capable of responding to the antigen.

The term "restricted" is used in various other ways:

- T cells are MHC-restricted i.e. they must recognize antigen presented on self MHC.
- CD4+ T cells are class II MHC-restricted i.e. they must recognize antigen presented on self class II MHC.
- CD8+ T cells are class I MHC-restricted i.e. they must recognize antigen presented on self class I MHC.
- A particular T cell clone may be I-E^k-restricted i.e. it recognizes its antigen ONLY when presented on self I-E^k.

("restricted" = "recognizes antigen on...")

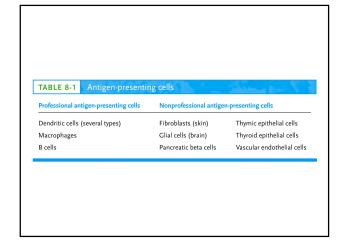


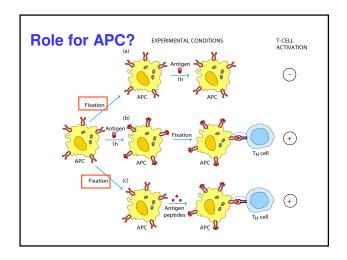
Associations between MHC and disease

Disease	Relative Risk	Allele
 Ankylosing Spondylitis 	90	B27
· Hereditary hemochromatosis	90	A3/B14
 Narcolepsy 	130	DR2

Self MHC Restriction

- Both MHC-I and MHC-II molecules can only recognize antigens when presented by SELF-MHC molecules.
- No value for individual to have T cells that recognize foreign antigen associated with foreign MHC
- Self MHC restriction occurs in thymus




Role of Antigen-Presenting Cells (APC)

- Helper T cells: recognize antigen after processing and presentation by MHC-II on APC (dendritic cells, macrophages, B cells).
- Cytotoxic T cells: recognize antigen when it is presented on MHC-I.
- Since most nucleated cells in the body express class I MHC, most cells in the body can present antigen to cytotoxic T cells. Although they are presenting antigen, these cells are usually not referred to as "antigen-presenting cells". If they are presenting antigen that will cause them to be killed by cytotoxic T cells, they are referred to as "target cells".

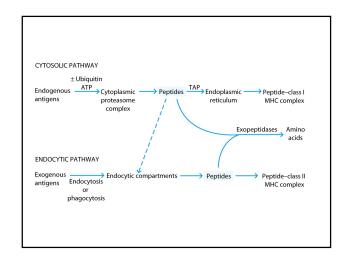
Antigen presenting cells

- Remember: 1) MHC-II, 2) deliver co-stimulatory signals
- Professional APC: DC> $M\Phi$ > B cells, why?
- DC: Always express high levels of MHC-II molecules and co-stimulatory activity (B7 molecule)
- Mo: requires activation to up-regulate MHC-II molecules and co-stimulatory molecules (B7 molecules)
- B cells: always express MHC-II molecules but needs to be activated to express co-stimulatory activity (B7 molecule)

Ag processing is required

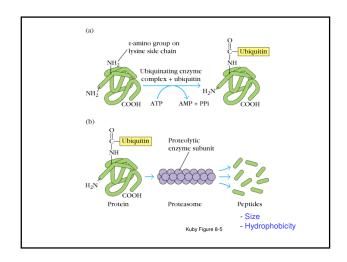
- Classical experiment showing that B and T cells have different requirement for antigen recognition.
- Processing is required for Th activation
- Processing is a metabolic active process

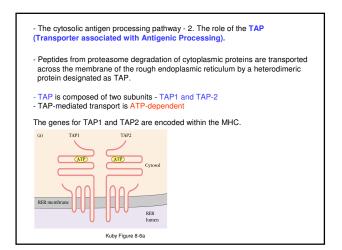
Points Concerning Antigen Processing and Presentation

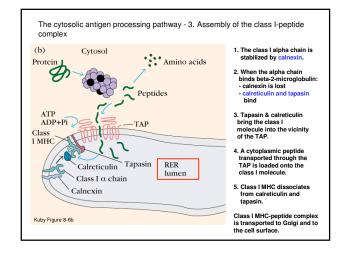

- 1. Location of pathogen
- viruses in cytosol, MHC class I pathway, Tc response (Cytosolic pathway)
- extracellular bacteria, MHC class II pathway, Th2 response → Ab formation (Endocytic pathway)
- intracellular bacteria, MHC class II pathway, Th1 response → cellular response (Endocytic)

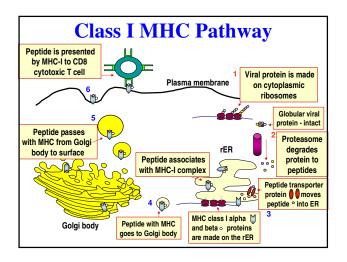
Points Concerning Antigen Processing and Presentation

- Peptides derived from both <u>self</u> and <u>non-self</u> proteins can associate with MHC class I and class II molecules.
- 3. Chemical nature of MHC groove determines which peptides it will bind.

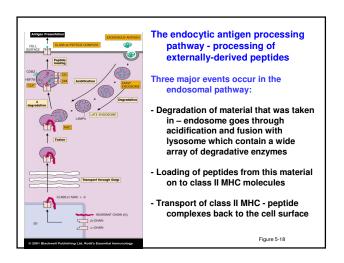

MHC-I and MHC-II associated with peptides processed in different intracellular compartments

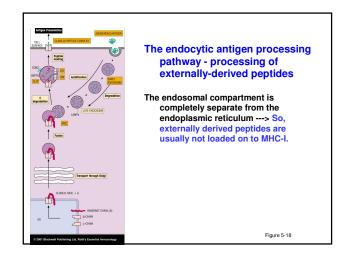

- A) Class I MHC binds peptides derived from endogenous antigens
- B) Class I MHC binds peptides from antigens that have been processed via the <u>cytosolic pathway</u> (derived from the cytoplasm of the cell)
- C) Class II MHC molecules bind peptides derived from exogenous antigens. These antigens were internalized by phagocytosis or endocytosis.
- D) These peptides are said to have been processed within the endocytic pathway.

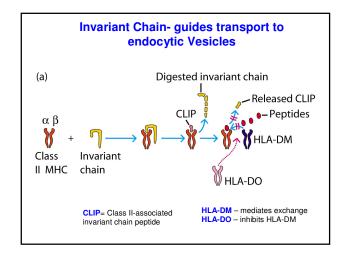


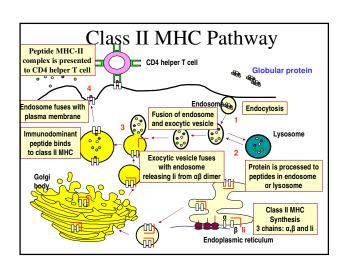

Endogenous Pathway

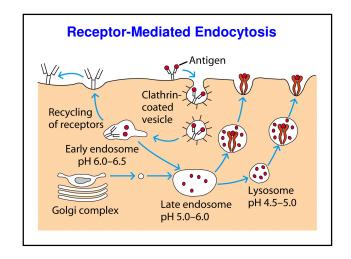
- Peptides are generated by proteasome degradation
- Peptides are transported from cytosol to the RER
- Peptides loading onto MHC-I is aided by chaperones






Class II Processing: (Exogenous)


- The endocytic antigen processing pathway processing of externally-derived peptides
- Antigen can be taken into cells by various means: phagocytosis, endocytosis, pinocytosis, receptormediated endocytosis
- Antigen taken up in these ways passes through a series of intracellular compartments of increasing acidity - early endosome (pH 6.5-6.0), late endosome (pH 6.0-5.0), phagolysosome (pH <5.0)



Presentation of Non-Peptide Antigens

- CD1 molecules (CD1a-d)
- Structurally related to MHC-I
- Encoded outside the MHC region
- Present in APC (DC>MØ>B cells)
- Presents peptides of 12-22 aa in size
- Presents to CD4, CD8 and NK cells
- Present LIPIDS and glycolipids

The End!!