Molecular Evidence | |||
Common Composition: The code used to translate nucleotide sequences into amino acid sequences is essentially the same in all organisms. Moreover, proteins in all organisms are invariably composed of the same set of 20 amino acids. This unity of composition and function is a powerful argument in favor of the common descent of the most diverse organisms.
Comparative Sequences: During the next two decades, myoglobin and hemoglobin sequences were determined for dozens of mammals, birds, reptiles, amphibians, fish, worms, and molluscs. All of these sequences were so obviously related that they could be compared with confidence with the three-dimensional structures of two selected standards--whale myoglobin and horse hemoglobin. Even more significantly, the differences between sequences from different organisms could be used to construct a family tree of hemoglobin and myoglobin variation among organisms. This tree agreed completely with observations derived from paleontology and anatomy about the common descent of the corresponding organisms. Similar family histories have been obtained from the three-dimensional structures and amino acid sequences of other proteins, such as cytochrome c (a protein engaged in energy transfer) and the digestive proteins trypsin and chymotrypsin. The examination of molecular structure offers a new and extremely powerful tool for studying evolutionary relationships. The quantity of information is potentially huge--as large as the thousands of different proteins contained in living organisms, and limited only by the time and resources of molecular biologists. Molecular Changes: As the ability to sequence the nucleotides making up DNA has improved, it also has become possible to use genes to reconstruct the evolutionary history of organisms. Because of mutations, the sequence of nucleotides in a gene gradually changes over time. The more closely related two organisms are, the less different their DNA will be. Because there are tens of thousands of genes in humans and other organisms, DNA contains a tremendous amount of information about the evolutionary history of each organism.
The figure on this page compares three molecular clocks: for cytochrome c proteins, which interact intimately with other macromolecules and are quite constrained in their amino acid sequences; for the less rigidly constrained hemoglobins, which interact mainly with oxygen and other small molecules; and for fibrinopeptides, which are protein fragments that are cut from larger proteins (fibrinogens) when blood clots. The clock for fibrinopeptides runs rapidly; 1 percent of the amino acids change in a little longer than 1 million years. At the other extreme, the molecular clock runs slowly for cytochrome c; a 1 percent change in amino acid sequence requires 20 million years. The hemoglobin clock is intermediate. The concept of a molecular clock is useful for two purposes. It determines evolutionary relationships among organisms, and it indicates the time in the past when species started to diverge from one another. Once the clock for a particular gene or protein has been calibrated by reference to some event whose time is known, the actual chronological time when all other events occurred can be determined by examining the protein or gene tree. Pseudogenes: An interesting additional line of evidence supporting evolution involves sequences of DNA known as "pseudogenes." Pseudogenes are remnants of genes that no longer function but continue to be carried along in DNA as excess baggage. Pseudogenes also change through time, as they are passed on from ancestors to descendants, and they offer an especially useful way of reconstructing evolutionary relationships. With functioning genes, one possible explanation for the relative similarity between genes from different organisms is that their ways of life are similar--for example, the genes from a horse and a zebra could be more similar because of their similar habitats and behaviors than the genes from a horse and a tiger. But this possible explanation does not work for pseudogenes, since they perform no function. Rather, the degree of similarity between pseudogenes must simply reflect their evolutionary relatedness. The more remote the last common ancestor of two organisms, the more dissimilar their pseudogenes will be.
| |||
Excerpted and adapted from: Evidence Supporting Biological Evolution |