

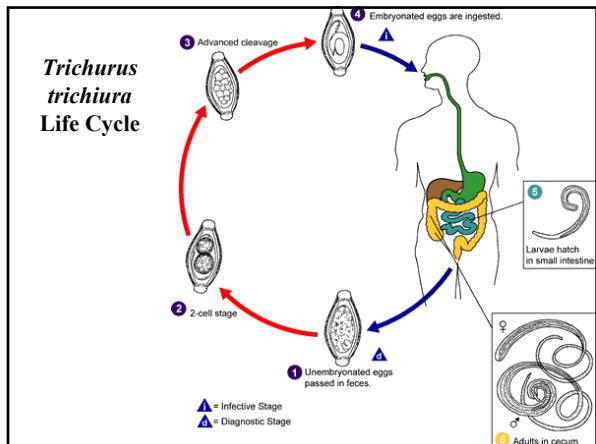
BIO 221

Invertebrate Zoology I

Spring 2010

Stephen M. Shuster
Northern Arizona University

<http://www4.nau.edu/isopod>


Lecture 22

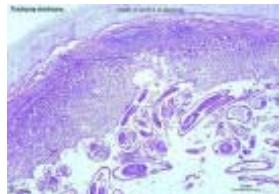
Order Trichurida

a. *Trichuris trichiura* - whipworm

1. human intestinal parasite
2. lives in tropical habitats, causes anemia
 3. life cycle
- a. egg -> voided in feces -> eggs ingested -> larva hatches
in gut -> adult worms develop
4. Identified from Pre-Spanish Conquest Andean Mummies.

Trichuris trichiura

b. note eggs - double plugs



Trichuris spp.

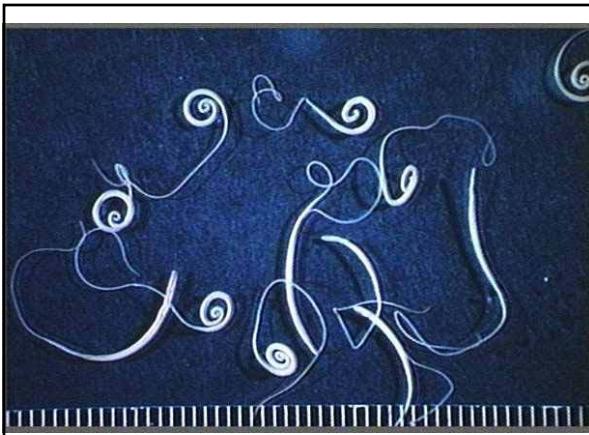
- Over 60 species of *Trichuris* have been documented, and each has been found to undergo a similar life cycle.
- the human whipworm (*T. trichiura*) and canine whipworm (*T. vulpis*) display a relatively high degree of host specificity, with canine whipworms only rarely occurring in humans.

Trichuris trichiura

- Females are capable of producing more than 10,000 eggs in a single day, which are passed out of the host's body with digestive waste and require a warm, moist environment to continue development into the embryonic stage.

Trichuris trichiura

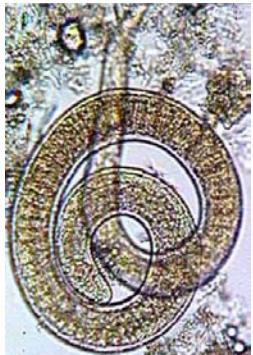
- Infection is acquired through the accidental ingestion of eggs and embryos. Because these parasites do not actually multiply within the host, every individual worm inside a host represents an independent infection event.



Order Trichurida

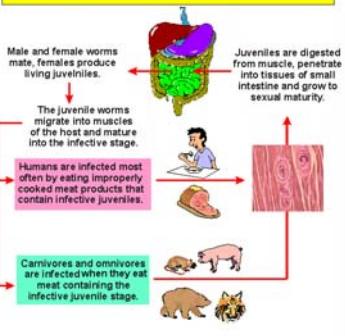
b. *Trichinella spiralis*

1. omnivore parasite
2. larvae encyst in muscle, cause "trichinosis"



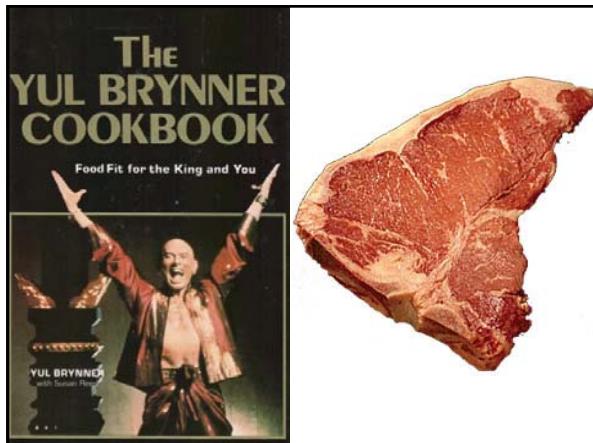
Life Cycle: Unusual Aspects

- a. Adults inhabit intestine, females embed in intestinal wall.
- b. Eggs mature in female uterus, larvae (J1) enter blood and lymph, travel to vascularized muscle.
- c. Larvae encyst in muscle, wait to be eaten.
- d. J4 hatch and mature into adults.



The Life Cycle of *Trichinella spiralis* (causing trichinosis or trichinellosis in human)

(Parasites and Parasitological Resources)



PROGRESSIVE SYMPTOMS OF TRICHINELLOSIS		
TIME post-infection	Stage of infection	Progressive disease symptoms
12 hrs-2 days	initial penetration and development of larval stages	First symptoms, mild nondescript
30 -32 hrs	copulation and female penetration of mucosa	intestinal inflammation and pain, nausea, vomiting, diarrhoea. terminates with facial edema and fever
5 - 7 days		
5 days - 6 wks	New born larvae released into tissues and start migration	focal or localized oedema - face and hands, pneumonia, pleurisy, encephalitis, meningitis, nephritis, deafness, peritonitis. Death from myocarditis.
10 days - 6 wks	larvae start to penetrate muscle cells	muscular pain, breathing difficulties, swelling of masseter muscles, weak pulse and low blood pressure, damage to heart. Death as a result of heart failure, respiratory failure, toxæmia or kidney damage

Mozart may have died from eating undercooked pork

Mozart's death in 1791 at age 35 may have been from trichinosis, according to a review of historical documents and examination of other theories. Medical researcher Jan Hirschmann's analysis of the composer's final illness appears in the June 11 Archives of Internal Medicine.

Hirschmann is a UW professor of medicine in the Division of General Internal Medicine and practices at Veterans Affairs Puget Sound Health Care System.

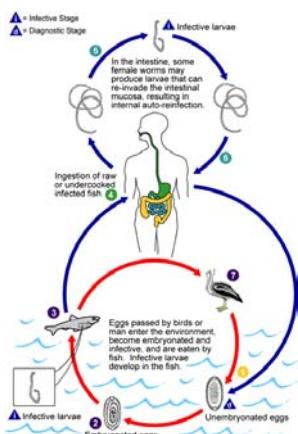
Hirschmann's study of Mozart's symptoms and the circumstances surrounding his death includes a letter in which the composer mentions eating pork cutlets. The letter, written 44 days before he died, correlates with the incubation period for trichinosis.

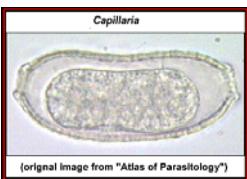
The nature of Mozart's fatal illness has vexed historians and led to much speculation, because no bodily remains are left for evidence. The official but vague cause of Mozart's death was listed as "severe military fever". The symptoms his family described included **edema without dyspnea, limb pain and swelling**. Mozart composed music and communicated until his last moments.

Order Trichurida

Capillaria spp.

1. Various species infecting birds, carnivores
2. Eggs shed in feces, eaten by small fish,
3. Piscivorous animals get nematodes in intestine
4. Various other life cycles





The nematode (roundworm) *Capillaria philippinensis* is the causative agent of human intestinal *capillariasis*. It was first discovered in the Philippines in 1963.

Class Rhabditea

(includes previous Secernentea, Phasmida)

A. Now subdivided in to several Subclasses

1. Chromadoria, Monohysteria, Leptolaimia (all free living)
2. Subclass Tylenchia - in plant and insects or free living.
3. Subclass Rhabditia (previously Secernentea, Phasmida)

Subclass Rhabditia

Characteristics

1. Club shaped, cylindrical or bulbed and muscular pharynx.
2. Bilobed copulatory bursa in males
3. Phasmids present, but often difficult to see.

Subclass Rhabditia

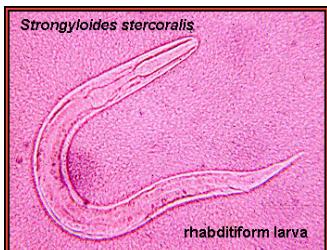
5 Representative Groups (usually orders)

1. **Rhabditida** - females are only known parasites
2. **Strongylida** - hookworms
3. **Ascarida** - intestinal worms
4. **Oxyurida** - pinworms
5. **Spirurida** - spirurids, dracunculids, filaroids

Order Rhabditida

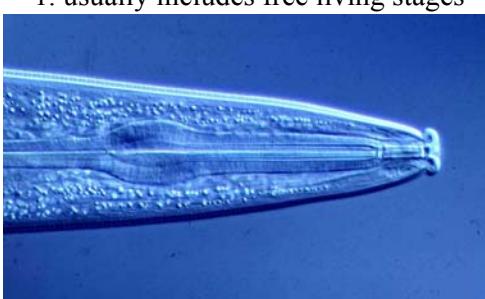
A. small parasites, appear to be transitional forms - include for free-living and parasitic forms.

1. Recognizable by:
 - a. Reduced male forms
1. Led to early conclusion that males were absent.
2. Appears that females are parasitic, males are often not.



Order Rhabditida

- b. Muscular esophagus
- 1. Usually with proximal bulb - "rhabditiform"
- 2. term also used to describe
 - a. muscular pharynxes in general
 - b. free living juvenile forms - usually J1



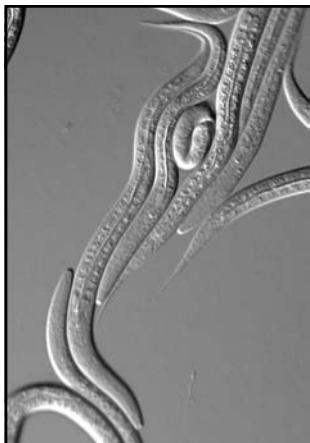
Order Rhabditida

- c. huge diversity of life cycles
- 1. usually includes free living stages

Caenorhabditis elegans

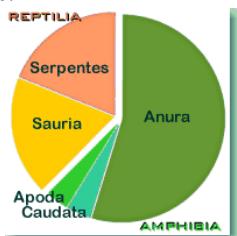
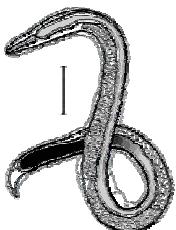
Caenorhabditis elegans

is a free-living soil nematode used widely in genetic studies. It reproduces sexually and possesses digestive, excretory and neuromuscular systems, providing a model for complex organ systems in an easily cultured organism.



It is particularly well-suited for genetic studies:

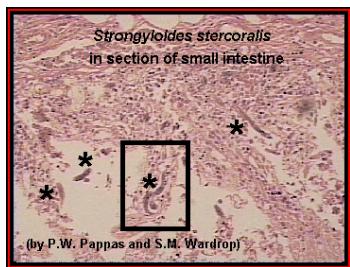
1. It is small, only 1mm in length and easy to culture, and it has a short life cycle (2 wks).
2. It is transparent, and each of its 959 somatic cells is visible through a microscope, making it an ideal organism for developmental studies.

Family Rhabdiasidae

1. Lungworms

- a. Common in amphibians and reptiles
- b. Recognizable by short esophagus, irregular cuticle.



Family Strongyloidae

- a. Long, slender worms (threadworms), with long esophagus (in females).
- b. Tend to be parasitic in intestine; females only, males are usually free living.

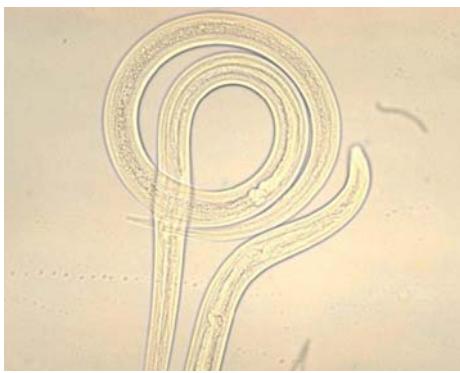
Strongyloides stercoralis

- 1. Parasite of human intestine
- a. also known as "threadworm" -
- 2. most of pathology associated with larval stages that move through tissues

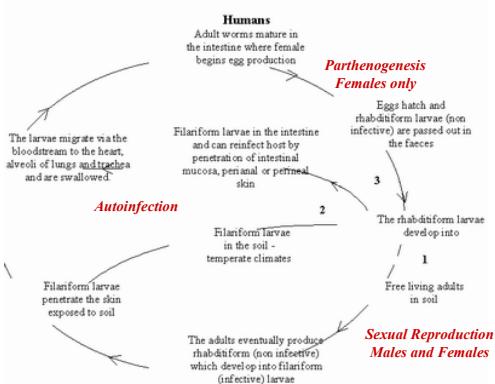
Strongyloides stercoralis

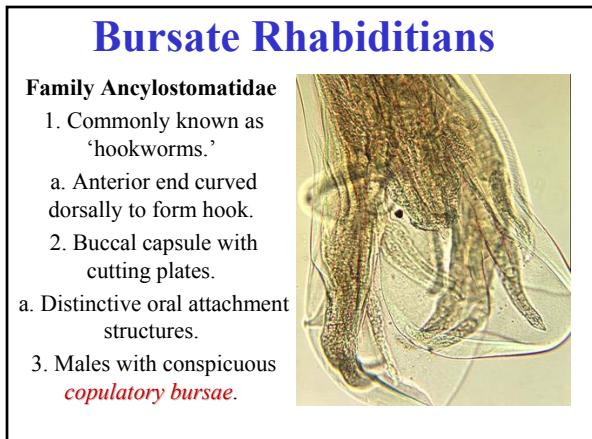
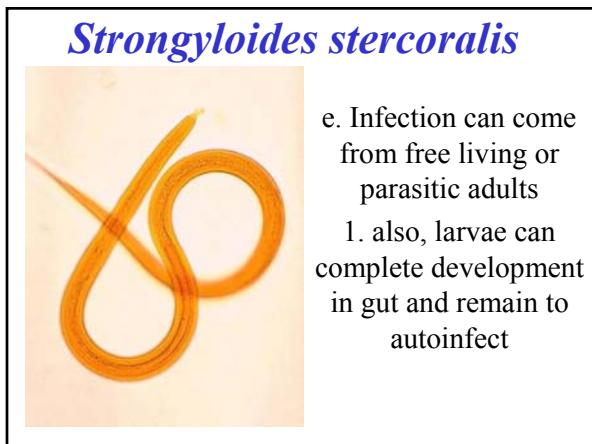
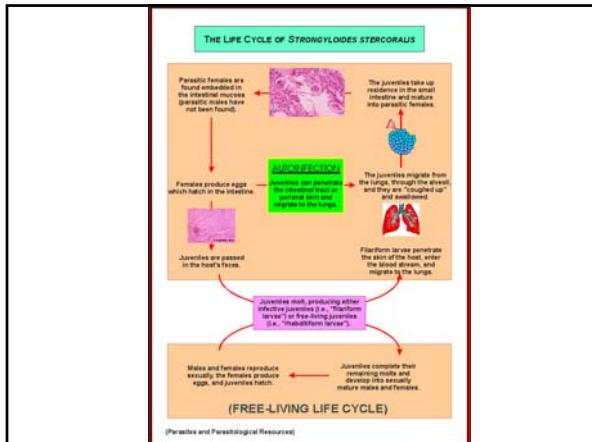
Life Cycle

- a. Females in intestinal mucosa
- b. Eggs laid in gut lumen, hatch in gut as J1, passed in feces
- c. Two possible routes


1. Free living adults - mate in soil and produce infective eggs.

Strongyloides stercoralis


2. Filariform juveniles (J3) wait in soil and infect new hosts
- d. Larvae get to lungs or migrate to intestine, however they can.
1. Either coughed up and swallowed or
2. move to intestine directly.

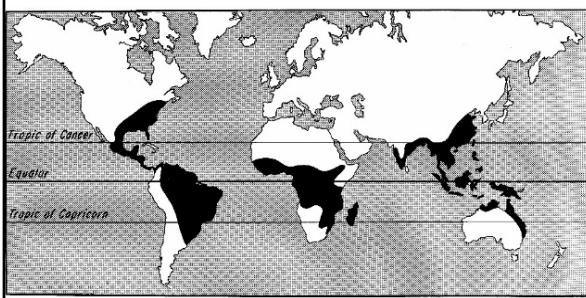




Strongyloides filariform larva

Strongyloides stercoralis

Necator americanus

1. American hookworm, cause of anemia, lethargy, retardation.
- a. Common in warm humid areas - killed by frost.
- b. A good reason to wear shoes.
- c. Probably came over in slave trade - also found in Old world.



Necator americanus

Necator americanus

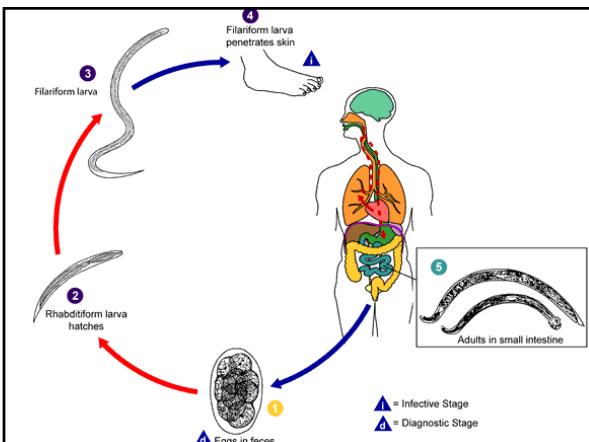
recognizable
by:

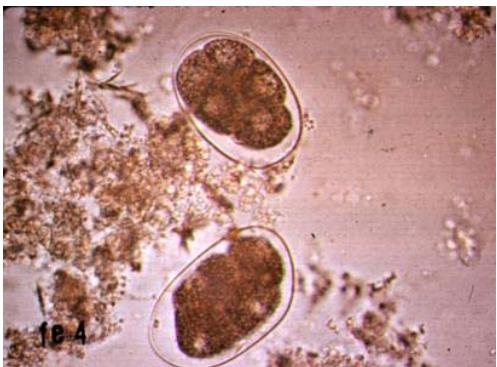
1. dorsal tooth
2. fused spicules

Necator americanus

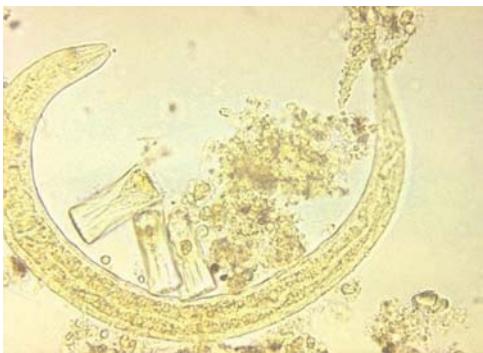
Life Cycle:

- a. Eggs in feces, develop in soil,
- b. Rhabditiform larva (J1) hatches, molts,
- c. Filariform (J3) penetrates skin, enters circulation.
- d. Moves to lungs, coughed up, swallowed, matures in intestine.





Necator americanus



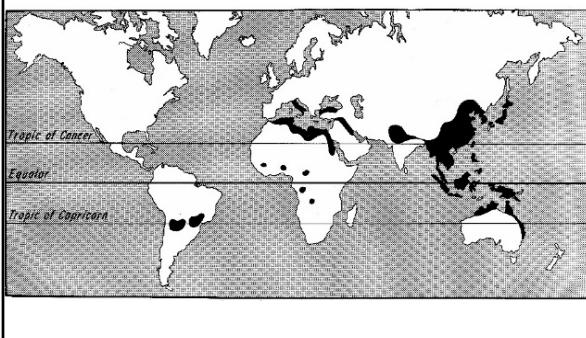
Rhabditiform larva of a hookworm

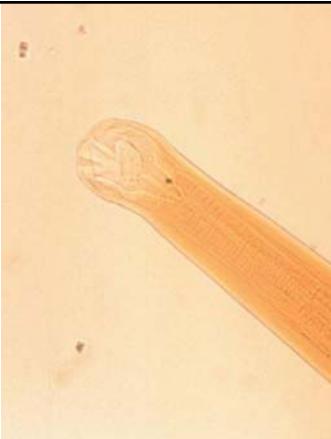
Necator americanus

Other Related Genera:

Ancylostoma duodenale

1. Commonly called old world hookworm
2. Tends to be larger; nastier because it feeds on more blood.




Ancylostoma duodenale

Ancylostoma duodenale

Recognizable by:

- a. 2 ventral teeth
- b. Unfused spicules
- 3. Other old world species exist

Ancylostoma caninum

Ancylostoma caninum

cuticular larval migrans
