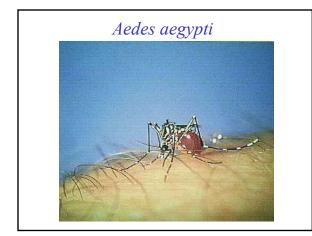
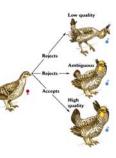
BIO 475 - Parasitology Spring 2009

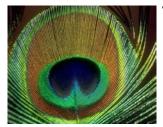

Stephen M. Shuster Northern Arizona University

http://www4.nau.edu/isopod

Lecture 4

Evolutionary Questions


- 1. Host-parasite evolution
- a. Host resistance/susceptibility.
- 1. An arms race between parasites and hosts.
- a. Selection is strong on each party to overcome the other.
- b. Stronger on parasites than on hosts?


Evolutionary Questions

- A possible context for mate selection.

 Mate preferences/characters could become fixed.
- b. However, if parasite resistance is important,
- 1. Choice may be based on characters that reflect this ability.

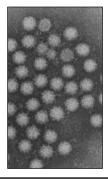
Evolutionary Questions

Thus, characters as well as preferences change over time. Possible example: bright coloration

in birds.

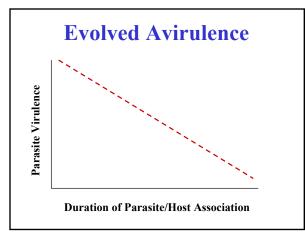
Virulence

- 1. Some parasites are more harmful to the host than others.
- 2. *Virulence* estimates this degree of pathogenicity.
 - Often attributed to duration (in evolutionary terms) of association
 Need not be so.


Myxoma example

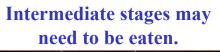
1. Attempt to control rabbits introduced in Australia with a lethal virus.

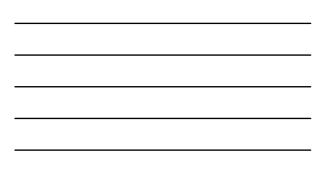
2. transmission by fleas which only bite live rabbits.

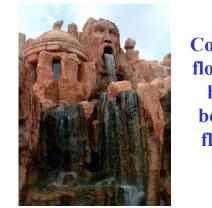

Myxoma Example

3. Led to the evolution of a less virulent virus.

b. Consistent with prediction that virulence should *correlate negatively* with duration of


association.

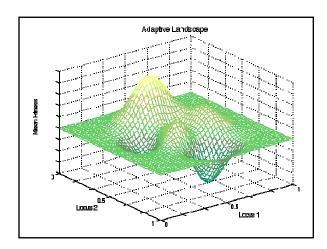

Evolutionary Questions


- 2. May not be true if parasite gains from being virulent.
- a. transmission may be favored by host sacrifice.

Copious flows of host bodily fluids

Rapid Reproduction

1. May kill host and remaining parasites, but this is balanced by early high transmission rate.


Evolutionary Questions

2. Shifting Balance processes (Sewall Wright)a. parasites seem to be an ideal model for testing Wright's theory.

The Adaptive Landscape

- 1. Population is broken into small neighborhoods
- 2. Local selection and genetic drift cause neighborhood differentiation;
 - a. Unique genetic combinations are pushed to 'adaptive peaks.'
 - 3. Productive peaks send out migrants that invade and change genotypes of other neighborhoods.

Systematics Questions

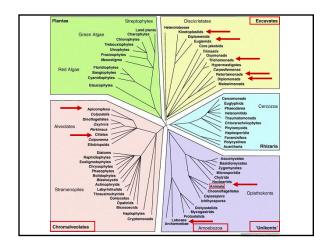
1. Phylogenetic systematics is a good approach because it generates testable hypotheses 2. Prediction: a. patterns of host radiation should dictate

patterns of parasite radiation.

£844£811£161£811£11£1 Egg-type on a tentative

phylogeny of tachinids (see publications)

John O. Stireman III, Stireman@iastate.edu


Systematics Questions

b. Result: seems to be upheld (see book examples).c. however, can be difficult because of difficulties in rooting tree.

Parasitic Protozoa

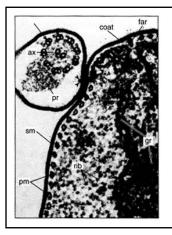
We will begin with the Supergroups Excavata, Amoebozoa and Chromalveolata (formerly Sarcomastigophora Sporozoa and Chromista)

1. Includes flagellates, amoebae, apicomplexa, ciliates

Previous Classifications

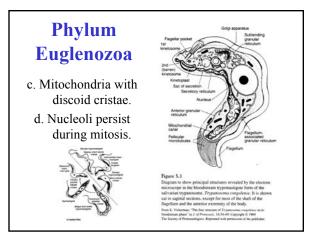
2. other orders that also have associations with plants, animals.

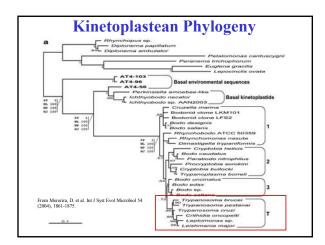
Previous Classifications


- 2. Zoomastigophorea animal like forms a. many parasitic orders.
 - b. we will mention them in turn.

Phylum Euglenozoa

General Characteristics

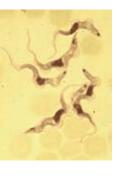

a. Cortical microtubules.
b. Flagellae with paraxial rod.
c. mitochondria with discoid cristae.
d. nucleoli persist during mitosis.



Phylum Euglenozoa

a. Cortical microtubules.b. Flagellae with paraxial rod (pr).

Phylum Euglenozoa 2. Many different orders. a. Most are free living; often with chloroplasts. b. Subphylum Kinetoplasta (or Class Kinetoplastea) 1. Diverged from rest of group 1 billion years ago! 2. Distinct with unique mitochondrion 3. Also usually with undulating membranes.



Order Kinetoplastida

1.May be revised to be a subclass (Metakinetoplastina)

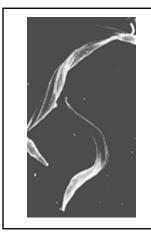
2. Includes Trypanosomes

a.Maybe soon, Order Trypanosomatida b. We will begin with this group because it is *well known* and serves to show *diversity of parasitic forms.*

Order Kinetoplastida

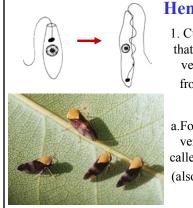
2. Evolution

a. Appear commonly in plants and sap-feeding insects.


1. Phytomonas, Crithidia

b. Transmission appears mainly by transport within body of insects.

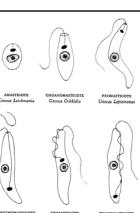
c. Variable stages occur within *different hosts*.

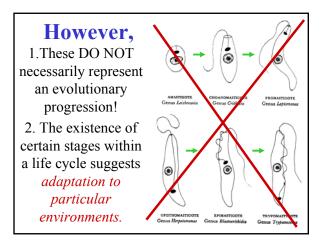


CHOANOMASTIGOTE Genus Crithidia

Host Shifts

- d. This tendency to shift between hosts is described by 2 terms:
- 1. monoxenous single host.
- 2. heteroxenous more than one host.




Hemoflagellates

- 1. Current hypothesis is that parasitic forms on vertebrates evolved from ancestral insect gut parasites.
- a.Forms specialized for vertebrate blood are called hemoflagellates;
 (also haemoflagellates)

Body Forms

- 1. Worth mentioning because these forms are typical of certain genera.
- a. Also, some genera have these forms included in their development as parasites.

Amastigote - no flagellum

1. But, retains kinetosome, kinetoplast and axoneme.

> 2. Example: Leishmania

a. Parasite of humans,

other mammals.

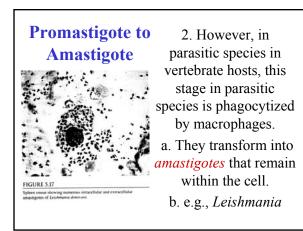
AMASTIGOTE Genus Leishmania

Choanomastigote 1. Flagellum emerges from a pocket 2. Example: Crithidia

a. tiny intestinal parasite of insects.

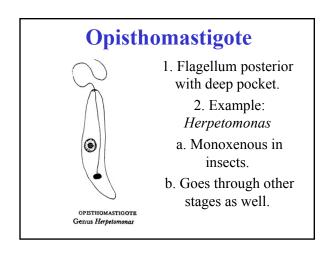
CHOANOMASTIGOTE Genus Crithidia

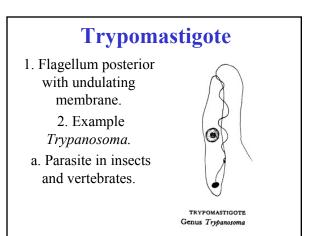
Promastigote


1. Flagellum is located at anterior end.

2. Example: *Leptomonas* a. Parasite of insects and other invertebrates.

b. Of no known medical importance.


PROMASTIGOTE Genus Leptomonas



Epimastigote 1. Flagellum on side of cell, sometimes with undulating membrane 1. example: Blastocrithidia a. Monoxenous parasite of insects b. Often found in guts of water striders

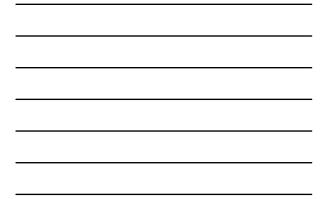
Trypanosomes of Importance to Humans

1. Two main genera:

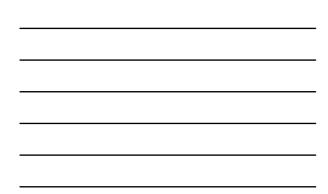
a. *Leishmania* 2. Known by various disease names (wherever the British army happened to be at the time).

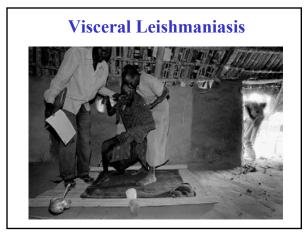
Leishmaniasis: a.k.a

- a. kala azar
- b. oriental sore
- c. (Aleppo; Jerico; Delhi) boil.
- d. Baghdad button
- e. Dum-Dum fever.


Leishmaniasis

2. Tends to be intracellular in tissues.


3. Produces lesions in skin or viscera.





Discovery of the Disease

Kala Azar or Black Fever has existed in India and China for centuries. In 1900 when William Leishman, a Scottish army doctor, found *Leishmania donovani* in stained smears from the spleen of a soldier suffering from a fever contracted at Dum-Dum in India.

His observations were published in 1903. At the same time Charles Donovan, a Professor of Physiology at Madras University, described a similar parasite in smears made from a splenic biopsy.

Prior to Leishman and Donovan's discovery kala azar was considered to be a communicable malaria-like disease that showed relapses, emaciation, as well as enlargement of the liver and spleen, and spread slowly across the continents along the trade routes.